
Computer Science
Department
Quantum Computing Group

Numerical bounds on few body
sector-lengths
Bachelor thesis by Maximilian Rüsch
Date of submission: November 22, 2023

Supervisor: Prof. Dr. Mariami Gachechiladze
Darmstadt

For science.

Abstract

Analyzing the correlation structure of quantum systems is central to understanding their behaviour. The notion
of sector lengths is useful for quantifying correlations in multipartite quantum systems in a basis-independent
manner. A complete characterization for sector lengths for two and three qubits exists, however for more
qubits this proves difficult to obtain. Instead of deriving properties for four qubits and above, we numerically
investigate such systems by obtaining lower bounds on the maximal k-partite correlations for certain k > 3.
For this purpose, tools from differential geometry are introduced to optimize over arbitrary pure quantum
states and certain subsets such as symmetric states. Additionally, we numerically investigate and support a
given conjecture of a threshold n0 after which correlations are upper bounded by

(︁
n
k

)︁
. We obtain results for

the investigation of this threshold n0 and if it can be discovered using the subsets of pure states.

I

Acknowledgments

I want to thank Jan Nöller and Mariami Gachechiladze for useful discussions and great supervision during the
development of this thesis. Additionally, I thank Nikolai Wyderka for providing insightful material that aided
in validating results obtained in this work.

I want to acknowledge the computing time provided on the high-performance computer Lichtenberg at
the NHR Centers NHR4CES at TU Darmstadt. This is funded by the Federal Ministry of Education and
Research, and the state governments participating on the basis of the resolutions of the GWK for national high
performance computing at universities1.

I thank Fabian Damken for helpful technical infrastructure that smoothed the path of writing this thesis.

Lastly, I thank Becca, Simge, and Thorben for their constructive criticism on this work and their innumerable
ways of lightening the mood when most needed.

1For more information on funding partners see: www.nhr-verein.de/unsere-partner

II

www.nhr-verein.de/unsere-partner

Contents

1 Introduction 1

2 Notions of quantum information 3

3 Sector lengths 5
3.1 Definition and basic properties . 5
3.2 Shadow inequalities . 6
3.3 Calculating sector lengths from purities . 7
3.4 Efficient sector length computation . 9
3.5 Sector length computation for symmetric states . 10

4 State Optimization 12
4.1 Notes on differential geometry . 12
4.2 Optimization in pure state space . 13
4.3 Optimization in symmetric state space . 14
4.4 Riemannian Optimization Methods . 16

5 Implementation 18
5.1 Automatic Differentiation and Compilation for Python . 18
5.2 Implementing state optimization . 19

6 Experiments 20
6.1 Exploring sector lengths . 20
6.2 Exploring optimizations . 22
6.3 Kickstarting state optimization . 26
6.4 Comparison to shadow inequalities . 27
6.5 Additional experiments . 27

7 Future extensions 29

8 Conclusions 30

III

1 Introduction

Correlations between multiple quantum particles are of major importance when studying and understanding
quantum phenomena. However, such correlations are not limitless, as they are subject to restrictions from
quantum mechanics. Such restrictions include the monogamy relations placed on entanglement [1]. Under-
standing the structure and nature of these restrictions helps to explore the limits of quantum correlations and
is thus central to studying multipartite quantum systems.

The correlation structure of an n-partite quantum system can be described by the notion of sector lengths [2].
For each k ≤ n, the sector length Ak captures the amount of k-partite correlations in the system. Bounds on
correlations expressed via sector lengths are used to prove non-existence of some highly entangled states such
as absolutely maximally entangled (AME) states of certain n [3]. Additionally, they can be used to construct
entanglement detection criteria [4].

Sector lengths are invariant under local unitary operations as they are a quantification of correlation [5].
They are also expressible in terms of purities of their reduced systems [2]. This relation to purities will heavily
benefit computation of sector lengths in terms of computational complexity.

Attainable values for individual sectors Ak with k ∈ {2, 3, n} are already characterized. For k ∈ {2, 3} it is
proven that there exists a n0 such that for n ≥ n0 they satisfy the bound Ak ≤

(︁
n
k

)︁
. For k > 3 however, the

known properties are insufficient to show such an upper bound. Thus, for these k > 3, existence of a n0 for
arbitrary k was only conjectured by Wyderka et al. [6]. Interestingly, for the first few odd k ≤ 11 an upper
bound to the value of n0 can be found using shadow inequalities [7, 8], see Section 3.2.

In this thesis, we aim to numerically investigate the attainable values for individual sectors for different
configurations of (n, k). In particular, we are interested in k > 3 to support the existence of n0 for such k. For
this purpose, we provide a method for optimization over arbitrary pure quantum states given some real-valued
objective function using concepts from differential geometry. We model the set of pure states and some of its
subsets as unit spheres, sometimes with respect to special norms. These spheres are Riemannian manifolds,
giving a notion of length, direction and movement on them. The notions defined on the Riemannian manifolds
are independent of coordinate systems and scale to any dimensionality of vectors. This makes the sets easily
traversable by optimization algorithms. We then adapt the widely used family of adaptive moment estimation
methods, also referred to as ADAM algorithms [9], to be compatible with this notion of movement. Using these
optimization methods, we are able to run our proposed investigation. In order to improve our optimization
methods, we propose and study different restrictions to the available pure states such as focusing only on
symmetric states. We also compare our proposed values of n0 for different n with the upper bounds found by
shadow inequalities.

This thesis is organized as follows: First, we introduce required notions of quantum information. With these
notions, we define sector lengths and discuss their properties along with different computation methods to
obtain them from a given quantum state. These computation methods are then cast into efficiently computable
objective functions usable for optimization. Furthermore, required notions from differential geometry are

1

introduced and used to model the set of all pure states and certain subsets as a traversable manifold. We
modify existing algorithms for adaptive gradient based optimization to be compatible with such manifolds and
their ambient space. We also discuss the possible simplifications of these objective functions when considering
restrictions to the available state space. Moreover, we discuss methods used to automatically differentiate and
speed up the objective functions, completing the prerequisites for optimizing with gradient based algorithms.
Finally, we apply the optimization techniques to find maximally attainable sector lengths and discuss the
impact of any placed restrictions on optimization.

2

2 Notions of quantum information

This chapter provides a short introduction to the basic notions in quantum information and their mathematical
description. The main difference between quantum information and its classical counterpart is that information
is not always representable by classical bits. In particular, a piece of information does not have to consist of either
one of the classical states 0, 1 but can also be some mixture of these classical states. This difference requires
vastly different handling in information processing. For more in-depth reading and a general introduction to
quantum information we refer to the book by Nielsen and Chuang [10].

Given a complex, d-dimensional Hilbert space H we can model a quantum mechanical pure state as a
normalised element of the space. In this thesis we only work in with qubits (as quantum generalizations of
the classical bits), thus we can assume H to have d = 2 for a single qubit. We use the Dirac notation derived
from scalar products which denotes a quantum state by a “ket” |ψ⟩ ∈ H and its canonical counterpart by
a “bra” ⟨ψ| ∈ H†. We can express states in any orthonormal basis of H. For our purposes we only use the
computational basis |1⟩ , . . . , |d⟩ which is exactly the canonical basis of H. In this basis, we express a quantum
state as |ψ⟩ =

∑︁
i αi |i⟩. The restriction to normalised states is motivated by understanding measurement of

the state |ψ⟩ in the basis as finding the system in the state |i⟩ with probability |αi|2.

When given two Hilbert spaces HA with dA and HB with dB each modeling a quantum system, we obtain
their composite system with the tensor product HAB = HA ⊗HB. This composite system is again a Hilbert
space with d = dA · dB, thus when working with n qubits the composite system has d = 2n. Additionally, the
two subsystems A, B of a composite state |ψ⟩AB ∈ HAB can be independent of each other. In that case, we
can express the state as the tensor product |ψ⟩AB = |ψ⟩A⊗ |ψ⟩B and we call it separable. Otherwise, i.e. when
the two subsystems are not independent of each other we call the state entangled.

We can evolve pure states by using unitary operators. The simplest of such unitary operators only act on one
system at a time, thus they can neither create nor destroy entanglement. These operators are also called local
operators. As an example, we present the unitary Pauli operators on one qubit:

σx = σ1 =

(︃
0 1
1 0

)︃
, σy = σ2 =

(︃
0 −i
i 0

)︃
, σz = σ3 =

(︃
1 0
0 −1

)︃
.

For our purposes, we also define the identity as the fourth Pauli operator σ0 = 1. Unitary operators can
be combined with the tensor product just like quantum states. A tensor product of multiple Pauli matrices
acts locally on each subsystem. Thus, it is exactly equal to the concatenation of applying each Pauli matrix
individually on its respective subsystem.

We can measure a quantum state with respect to some property that is captured by an observable. This
observable is modeled by a hermitian operator and its eigenvalues ϵi model the possible outcomes of mea-
surement. The post-measurement state |φ⟩i associated with the outcome ϵi is modeled by the eigenvector
to the eigenvalue ϵi. When measuring a pure state |ψ⟩ with the observableM , the expectation value of the
measurement is given by ⟨ψ|M |ψ⟩. Note that each of the Pauli matrices above is also a hermitian matrix and

3

can therefore be used as an observable. In particular, the tensor product of multiple hermitian matrices is also
hermitian, thus we can obtain Pauli observables for composite states.

When measuring one of the two subsystems of a separable state, say |ψ⟩A, and throwing away the results (i.e.
not looking at the outcome of the measurement), we obtain the remaining state |ψ⟩B without modifications.
As the state is separable the two subsystems are not inherently “connected” and can thus be measured and
handled independently of each other. We refer to this measurement type as the reduction of the state |ψ⟩ onto
the remaining subsystem B. However, when applying this reduction to an entangled state where the two
subsystems are not independent we receive a non-pure state. Instead, the system attains the post-measurement
state |φ⟩i with probability ∥ϵi∥2. We summarize this by an ensemble {∥ϵi∥2 = λi, |φ⟩i} which is a classical
mixture of pure quantum states. To model such ensembles efficiently, we need a more general framework:
the so-called mixed states.

We model a mixed state by a density operator, a self adjoint, positive semi definite matrix ρ ∈ L(H) with
Tr(ρ) = 1. The mixed state for an ensemble {λi, |φ⟩i} is expressed by ρ =

∑︁
i λi |φi⟩ ⟨φi|. The |φ⟩i ∈ H

thus form an eigenbasis of this mixed state ρ. We motivate the restriction Tr(ρ) = 1 by observing that the
probabilities in the ensemble must sum exactly to 1, thus requiring that

∑︁
i λi = 1. Additionally, we motivate

the positivity of ρ by noting that the probability of the system resulting in a given state must not be negative,
thus necessitating that λi ≥ 0. In the special case where λ1 = 1, implying λi = 0 for the remaining λi, the
ensemble associated with ρ contains only a single quantum state, thus we call the state ρ pure. We can
determine the purity, i.e. how close a mixed state ρ is to being pure by calculating Tr

(︁
ρ2
)︁
, where it is pure

exactly when Tr
(︁
ρ2
)︁
= 1.

Lastly, we generalize the notion of measuring quantum states to the mixed states. A generalized measurement
with an observableM is modeled by a set of positive operatorsE1, . . . , Ek associated with certain measurement
outcomes 1, . . . , k. The probability of measuring the outcome j for a state ρ is captured by Tr(ρEj). Similarly,
the expectation value of measurement with an observable M is expressed by Tr(ρM). Additionally, as we
always measure something all probabilities for the outcomes should add up to one, thus we require that∑︁

j Ej = 1 holds.

4

3 Sector lengths

In this chapter, we introduce sector lengths as well as discuss their central properties, yielding a first method
of computation. Additionally, we introduce the central conjecture which this thesis is interested in. We also
discuss current insufficient analytical approaches to proving the conjecture. These insufficient approaches
motivate us to search for different numerical approaches which support the conjecture. Lastly, we summarize
and extend more efficient computation methods for sector lengths, empowering the aforementioned numerical
approaches.

3.1 Definition and basic properties

We are introducing the central object of this thesis, the sector length, by defining it with special correlation
operators constructed from Pauli matrices. For a more detailed explanation see [2, 6]. Let ρ be a mixed
quantum state for n qubits. Furthermore, let B be the set of all possible length n enumerations of combinations
of the four Pauli operators. Explicitly, B is defined as

B :=
⨂︂

0≤i≤n
σ(i) with σ(i) ∈ {1, σx, σy, σz}.

Now let S ⊆ {1, . . . , n} be a subset of all parties in the state and BS ⊂ B the set of all Pauli combinations
which act non-trivially on exactly the parties contained in S. Non-trivial action is defined as acting with any
Pauli operator other than 1. The S-correlation strength LS(ρ) of a state ρ is defined as the sum of squared
expectation values:

LS(ρ) :=
∑︂
σ∈BS

⟨σ⟩2ρ =
∑︂
σ∈BS

Tr[σρ]2.

Definition 3.1. For k ∈ 0, . . . , n, the sector length Ak(ρ) is the sum of LS(ρ) for all S with |S| = k:

Ak(ρ) :=
∑︂
|S|=k

∑︂
σ∈BS

Tr[σρ]2 =
∑︂
Ξk

Tr[Ξkρ]2 for all k ∈ 0, . . . , n, (3.2)

taking Ξk as a Pauli operator from any of the BS with |S| = k.

Note that as for k = 0 we have only S = ∅ and B∅ = {1n}, thus A0 = 1 by normalization. The sum of all
sector lengths of a state is equal to its purity up to a factor of 2n. Specifically for pure states we have that∑︁n

k=0Ak = 2n as ρ = ρ2.

Sector lengths are invariant under local unitary transformations [5]. This invariance is useful for our
upcoming optimizations as it increases the probability of us finding optimal solutions to our optimization
problem discussed in Chapter 4.

5

The sector lengths of a state are connected to its entanglement properties as they can be used to construct
entanglement detection criteria [4]. Due to this connection, shedding light on the structure of sector lengths
and finding upper bounds on their attainable values is of significant interest. Any results obtained in some
basis are valid for any basis due to the invariance of sector lengths to local unitary transformation.

First, we derive some lower bound on the maximal values attainable for sector lengths:

Remark 3.3. The maximal value attainable for a sector Ak for a state of n qubits is at least
(︁
n
k

)︁
as it can be

attained by the fully separable state Ak(|0⟩⊗n) =
(︁
n
k

)︁
[6].

We continue with the following observation:

Lemma 3.4 (Lemma 1 from [6]). If for all quantum states ρ of n0 qubits it holds that Ak(ρ) ≤
(︁
n0

k

)︁
, then for

all states ρ′ of n ≥ n0, it holds that Ak(ρ′) ≤
(︁
n
k

)︁
.

It was already shown that for k ∈ {2, 3} such a n0 exists, i.e. the lower bound from Remark 3.3 also constitutes
an upper bound of we take n sufficiently large. The main goal of this thesis is to numerically investigate and
support the following conjecture, regarding the existence of such n0 for all k:

Conjecture 3.5 (Conjecture 6 from [6]). For all k there exists a n0 such that for all n ≥ n0, Ak ≤
(︁
n
k

)︁
holds for

every state of n qubits.

We aim to support Conjecture 3.5 by investigating and suggesting n0 for different Ak and constructing the
tools required for this task. In particular, we provide lower bounds on different n0 by showing that only below
these bounds we find states which violate Ak ≤

(︁
n
k

)︁
.

Remark 3.6. Note that sector lengths are convex quantities on the mixed states, thus their maximal values
are achieved by pure states [6]. Therefore, when numerically exploring bounds on sector lengths we can use
optimization techniques and computation methods tailored towards pure state space and subsets thereof.

3.2 Shadow inequalities

In addition to these lower bounds on n0, we can also obtain upper bounds on n0 in certain cases using shadow
inequalities [11]. Shadow inequalities are a helpful tool in finding bounds on correlations within a state. As
an example, they can be used to find upper bounds on the entanglement found in AME states [8].

We can use shadow inequalities to find tight bounds on n0 for A2 and A3 helping to fully characterize the
state space associated with their obtainable values [6]. In this section, we review shadow inequalities and
their relation to sector lengths.

Given two positive semi-definite hermitian operatorsM and N acting on a system of n-qubits, the following
holds for all T ⊂ {1, . . . , n} [7, 11]:∑︂

S⊂{1,...,n}

(−1)|S∩T̄ | Tr[TrS̄(M)TrS̄(N)] ≥ 0.

6

The shadow inequalities Sk ≥ 0 are obtained by summing over all T with |T | = k:

Sk :=
∑︂

T,S⊂{1,...,n}

(−1)|S∩T̄ | Tr[TrS̄(M)TrS̄(N)] ≥ 0.

We evaluate the inequalities in terms of sector lengths for a specific stateM = N = ρ [12, 13]:

Sk =
1

2n

n∑︂
r=0

(−1)rKk(r;n)Ar ≥ 0

with

Kk(r;n) =

k∑︂
j=0

(−1)j3k−j
(︃
r

j

)︃(︃
n− r
k − j

)︃
.

We can add further constraints derived from properties of pure states which are expressible in terms of sector
lengths as well [6, 14]:

Mm := 2m
n−m∑︂
j=0

(︃
n− j
m

)︃
Aj − 2n−m

m∑︂
j=0

(︃
n− j
n−m

)︃
Aj = 0 for 0 ≤ m ≤ n.

In coding theory, these constraintsMm = 0 are known as MacWilliams identities [15].

With the shadow inequalities, MacWilliams identities, and the purity constraint, linear programs can be used
to find the upper bound on n0 for k = 3 [6]. Note that the upper bound on n0 for k = 2 can be obtained from
the purity constraints alone without the shadow inequalities.

Shadow inequalities can also be obtained for k ≥ 3. However, they appear to only manage to provide any
upper bound on n0 when k is odd. Additionally, they are insufficient to form a tight upper bound on n0 for odd
k > 3. The results for some small k, which we obtained from internal discussions, can be found in Table 6.17.

3.3 Calculating sector lengths from purities

Computing the sector lengths in ways similar to their original definition provided in Theorem 3.2 has the
drawback of being very expensive. Enumerating every relevant Pauli operator Ξk for a given k necessitates
many matrix multiplications and, depending on the implementation, high intermediate storage requirements.
This motivates the search for more efficient computation methods which are achieved by computing sector
lengths over purities of reductions of the state. This section discusses the relation of purities of reductions of a
state to its sector lengths and Section 3.4 concerns leveraging this relation in computations.

Let ρS denote the reduction of ρ onto the set S. It is already noted that a given LS(ρ) will only depend on ρS
and the purities of its reductions [2]

LS(ρ) = LS(ρS) =
∑︂
S′⊂S

(−1)|S|−|S′|dS′ Tr
[︁
ρ2S′

]︁
, (3.7)

where dS′ =
∏︁
a∈S′ da with da being the dimensionality of the system for party a. For our case, ∀a ∈ S′ : da = 2

holds as we only work with qubits.

7

This approach is a good improvement upon the original computation for a single LS(ρ) as we no longer need
to compute all σ ∈ BS . However, when computing Ak and using all BS with |S| = k, another approach
using purities inspired from weight enumerators in coding theory emerges. Weight enumerators are bivariate
polynomials which refer to their coefficients as weights. If we denote the weights of an enumerator by Aw for
0 ≤ w ≤ n we can construct its general form [16]

A(x, y) :=
∑︂

0≤w≤n
Awx

n−dyd. (3.8)

It turns out that sector lengths are a special case of the weights in the primary Shor-Laflamme weight enumerator
A [16, 17]. Recall that B is the set of all n-qubit Pauli operators. Let wt(E) be the weight of a given E ∈ B,
denoting the number of non-trivially acting Pauli operators in E. Then for two operatorsM1,M2, a single
weight Ad(M1,M2) in A (disregarding normalization) is defined as

Ad(M1,M2) :=
∑︂
E∈E

wt(E)=d

Tr(EM1)Tr(EM2).

For the special case whereM1 =M2 = ρ, this yields

Ad(ρ) =
∑︂
E∈E

wt(E)=d

Tr(Eρ)2.

Since {E ∈ B|wt(E) = d} = {Ξ}d, we obtain the exact definition of a sector length

Ad(ρ) =
∑︂
Ξd

Tr(Ξdρ)2.

To summarize, the weight Ad of the primary Shor-Laflamme enumerator (up to normalization) is exactly equal
to the sector length Ak with k = d. For a givenM1,M2, the full enumerator polynomial A can be constructed
using Theorem 3.8:

A(x, y) :=
∑︂

0≤d≤n
Ad(M1,M2)x

n−dyd

and analogously using Ad(ρ).

Motivated by the primary Shor-Laflamme enumerator, an additional enumerator A′ known as the Rains
primary enumerator can be defined for a set of parties S and two operatorsM1,M2 [16]:

A′
S(M1,M2) := TrS(TrSc(M1)TrSc(M2))

with TrS being the partial trace over the parties S and Sc denoting the complement of S. A single weight of
the new enumerator is defined as

A′
d(M1,M2) :=

∑︂
|S|=d

A′
S(M1,M2).

SettingM1 =M2 = ρ again yields the purity of the reduction ρS:

A′
S(M1,M2) = TrS(TrSc(M1)TrSc(M2)) = TrS(ρ2S) = Tr

(︁
ρ2S

)︁
=: A′

S(ρ),

8

which reduces the weights of A′ to the sum over purities of all reductions of the state onto d parties:

A′
d(M1,M2) =

∑︂
|S|=d

A′
S(ρ) =

∑︂
|S|=d

Tr
(︁
ρ2S

)︁
=: A′

d(ρ).

Defining the full Rains enumerator polynomial A′ analogously to A, it is proven in corollary 5 and theorem 7
of [16] that both enumerators are related by:

A′(x, y) = A(x+ y/2, y/2) or equivalently A(x, y) = A′(x− y, 2y). (3.9)

The transformation Theorem 3.9 gives us a tool to compute sector lengths of a state ρ by only summing
purities of reductions of ρ. We first compute all A′

d and then use the relation of A′ to A yielding a polynomial
on x, y containing the sector lengths of ρ. To extract these sector lengths we can set x = 1 and solve for the
coefficients of the remaining yd:

A(x, y) =
∑︂

0≤d≤n
Ad(ρ)x

n−dyd
x:=1
=

∑︂
0≤d≤n

Ad(ρ)y
d.

3.4 Efficient sector length computation

A single weight A′
d can also be obtained only using Ai with 0 ≤ i ≤ d [16]:

A′
d = 2−d

∑︂
0≤i≤d

(︃
n− i
n− d

)︃
Ai.

However, the reverse is also true as inspired by LS(ρ) from Theorem 3.7 depending only on the purities of the
reductions of ρS:

Corollary 3.10 (to Theorem 3.9). For any k ∈ 0, . . . , n, Ak can be obtained from only A′
d with 0 ≤ d ≤ k,

following the identity

Ak =
∑︂

0≤d≤k
(−1)k+d2d

(︃
n− d
n− k

)︃
A′
d.

Proof. Using Theorem 3.9, we begin to solve for Ai:

A(x, y) =
∑︂

0≤d≤n
A′
d(x− y)n−d(2y)d

=
∑︂

0≤d≤n
A′
d2
d

∑︂
0≤i≤n−d

(︃
n− d
i

)︃
(−1)n−d−ixiyn−d−iyd

=
∑︂

0≤d≤n
A′
d2
d

∑︂
0≤i≤n−d

(︃
n− d
i

)︃
(−1)n−d−ixiyn−i

=
∑︂

0≤i≤n

∑︂
0≤d≤n

A′
d2
d

(︃
n− d
i

)︃
(−1)n−d−i

⏞ ⏟⏟ ⏞
=An−i

xiyn−i.

9

In the last step, we used that
(︁
n−d
i

)︁
= 0 for i > n− d to free the summation index i from dependence on d.

Setting k = n− i and reversing the summation index reveals our target Ak:

An−i =
∑︂

0≤d≤n
A′
d2
d

(︃
n− d
i

)︃
(−1)n−d−i

Ak =
∑︂

0≤d≤n
A′
d2
d

(︃
n− d
n− k

)︃
(−1)k+d

=
∑︂

0≤d≤k
(−1)k+d2d

(︃
n− d
n− k

)︃
A′
d.

Corollary 3.10 enables us to significantly reduce the number and size of computed reductions of ρ, leading to
a considerable improvement in performance of computation.

3.5 Sector length computation for symmetric states

There is a subset of pure states called symmetric states which are invariant under exchange of system pairs.
For 0 ≤ i, j ≤ n, let P̂ ij be the unitary operator that swaps the subsystems i and j. Then a n-qubit state ρS is
a symmetric state exactly when the following holds:

P̂ ijρS = ρS ∀i, j. (3.11)

For pure states we can express this restriction alternatively in the following way: Let wtH(a) be the Hamming
weight of a binary string a, i.e. the number of ones in the string a. Furthermore, take the expression of a state
|ψ⟩ in its computational basis:

|ψ⟩ =
∑︂

a∈{0,1}n
ca |a⟩

For |ψ⟩ to be a symmetric state, we require that all |a⟩ with the same Hamming weight wtH(a) share the same
coefficient ca. More formally, we require that for all a, b ∈ {0, 1}n it holds that wtH(a) = wtH(b)⇒ ca = cb.

Consider the set Hk = {a|wtH(a) = k, a ∈ {0, 1}n} of all strings with length n and weight k. The equal
superposition of all |h⟩ with h ∈ Hk is commonly known as the Dicke state |Dn

k ⟩ [18]. Expressing any state of
n-qubits using Dicke states automatically enforces the symmetry condition from Theorem 3.11. Exchanging
systems in such states will only produce permutations of binary strings which share the coefficient, thus
staying effectively invariant:

P̂ ij

n∑︂
k=0

ck |Dn
k ⟩ =

n∑︂
k=0

ckP̂ ij |Dn
k ⟩ =

n∑︂
k=0

ck |Dn
k ⟩ .

Symmetric states as expressed via Dicke states can be fully described by a greatly reduced number of
parameters. A general n-qubit pure state requires (in vector notation) exponentially growing 2n parameters,
while a symmetric state of an equal qubit count only requires linearly growing n+ 1 parameters. This makes
symmetric states easier to handle in computational applications. In particular, derivatives of sector lengths for
symmetric states will be easier to compute.

10

For symmetric states, one can further optimize computations. For a given k, all possible reductions of a state
ρS to k parties must share the same sector Ak due to the invariance of ρS under permutations. With this,
one can compute a single reduction ρS0 and multiply the resulting sector lengths by the number of possible
different party sets for reduction:

Ak(ρ) =

(︃
n

k

)︃
Ak(ρS0). (3.12)

Lastly, it may be possible to fully avoid computation of reduced density matrices for symmetric states. At
least for Dicke states themselves, computations of their S-correlation strength LS and thus also of their sector
lengths Ak are directly possible without computing reduced density matrices. The purity of the reduced
systems can be explicitly given due to the high symmetry in the original state [2]. However, it is a lot harder
to give a closed form purity expression for the full range of symmetric states as they are linear combinations
of Dicke states. As will be clarified in the following chapters, a technique like this may lower computational
resource cost significantly and allow exploration of much higher k than currently possible.

11

4 State Optimization

A common method to optimize in spaces of general quantum states is using semi definite programs (SDPs) as
the common representation of states and any operations defined on them work with positive semi-definite
matrices [19]. In this sense, SDPs are a natural optimization method for problems in quantum information
science. However, SDPs become increasingly harder to implement for non-linear objective functions (like
sector lengths) as one needs to introduce auxiliary variables to find some new linear objective function. SDPs
often require non-trivial constraints to give any useful results. Finding these constraints can be cumbersome
and hard to come up with for e.g. fidelity estimation problems [19]. This requirement of SDPs for linear
objective functions and non-trivial constraints stems from semi-definite programming being a subfield of
convex optimization. It raises the entry barrier and even limits the range of possible objective functions for
use in SDPs.

We want to take another approach of using stochastic gradient-based optimization methods as they are usually
more accessible and easier to implement than SDPs. The simplest of these methods is stochastic gradient
descent (SGD) but more advanced methods like the adaptive family of ADAM [9] and alike exist. These
methods however, in their original definition, are restricted to the Euclidean space Rn. Several works extend
the definitions of the methods and most of their guarantees (e.g. with respect to convergence) to a more
general domain called Riemannian manifolds [20, 21]. This domain from the field of differential geometry
enables study and experiments with optimization spaces that are not necessarily Euclidean. We want to
combine the simplicity and convergence guarantees of Euclidean ADAM and the flexibility of Riemannian
manifolds regarding the modeling of search spaces.

In this chapter, we will model the pure state space and some of its subsets with spheres. We handle these
spheres as Riemannian manifolds and use tools defined on those manifolds to define movement from a point
with a given direction. Additionally, we adapt the ADAM algorithm to be able to use this movement on the
manifold to perform a gradient-based optimization.

4.1 Notes on differential geometry

This section covers some basic concepts of differential geometry required to understand the ideas following in
the next sections. For a more comprehensive introduction to the field we refer the reader to Spivak [22] or
Robbin and Salamon [23].

Manifolds are a generalization of surfaces in higher dimensions. A manifold M of dimension n is thus
a hypersurface that is embedded in a surrounding Euclidean space Rm (for spheres it can be fixed with
m = n+ 1) and can be locally approximated in a first-order manner by other Euclidean spaces of dimension
n called tangent spaces. The tangent space for a specific point x ∈M (which we will refer to as the anchor
of the tangent space) is expressed by TxM. A tangent space lets us define its local geometry by adding a

12

point-specific inner product usually expressed by gx(·, ·) : TxM× TxM→ R. The collection of all gx across
the tangent spaces is called the Riemannian metric g of a manifoldM which then becomes a Riemannian
manifold as the pair (M, g).

Defining the metric g enables us further to define a norm ∥·∥x local to the anchor x ∈M by ∥v∥x :=
√︁
gx(v, v)

for a tangent vector v ∈ TxM. We can express the length l(c) of a curve c(·) : [a, b] →M via the norm by
integrating over its local speed along the curve: l(c) :=

∫︁ 1
t=0

⃦⃦⃦
c(t)̇

⃦⃦⃦
c(t)
dt. Curves with locally minimal length

(a generalization of the concept of a “straight” line) are called geodesics and are usually denoted by γ. Note
that a geodesic between two points inM is not necessarily the shortest path between them. An instance of
this is found in the generalization of a centered circle on a sphere manifold called a “great circle”. Any arc of
any great circle is a geodesic. In particular, the two possible arcs connecting the two points in question on a
great circle are geodesics. However, only one of them is the globally shortest path between the two points.

As tangent spaces are only local approximations, we cannot take a step from an anchor x ∈M in any direction
v ∈ TxM⊆ Rn+1 in the ambient space and still expect to end up on a point on the manifoldM. This can be
solved (under some additional assumptions which hold for spheres) by the exponential map expx : TxM→M
for a given anchor x. The exponential map defines the movement along a geodesic from its given anchor x
in an initial direction v ∈ TxM. A simple example for this is the exponential map for Rn, which is defined
as a simple translation expx(u) = x+ u. We can depict movement on the manifold for small t in the initial
direction v with expx(tv).

Movement from a point x to a point y on the manifold may alter our local geometry (e.g. for any manifold with
some curvature like a sphere). Thus, we need to transport any vectors initially defined in TxM (e.g. any state
produced by optimization methods such as momentum in ADAM) without altering their local interpretation.
In Euclidean space without curvature this can be easily done via translating a given vector v from x to y, since
the local geometry stays the same. For a sphere manifold, simple translation (direction of the vector stays fixed
in surrounding Rn+1) causes the vector to rotate relative to the surface of the manifold. Notably, the resulting
direction of the vector may depend on the taken path from x to y. This is why a special construction Px(v;w)
called parallel transport is introduced that can transport a vector v from its anchor x along a geodesic initialized
with direction and velocity w. While an exact parallel transport may be computationally expensive, one can
use a simple projection onto the next tangent space TyM as an approximation for very small movements. This
particular approximation on the sphere may degrade the state to be transported by some amount. However,
for most applications using adaptive methods this degradation is negligible and can (for very small movements)
be disregarded.

4.2 Optimization in pure state space

Recall from Remark 3.6 that the sector length Ai is a convex quantity, thus its maximal values can be attained
by pure states. This enables us to confine the search space for any optimization method to the pure states
which due to normalization can be naturally understood to be on the unit sphere. Thus, we can use simple
movement via the exponential map without leaving pure state space and are guaranteed that the optimal
states for any given target quantity are on the sphere. Explicitly, for any number of qubits n, taking R2n as the
ambient space of a sphere S2n−1 with S2n−1 := {v ∈ R2n : ∥v∥ = 1} (using the standard Euclidean norm),
we can see that S2n−1 only contains pure quantum states (with no imaginary parts to their parameters). As
pure states are usually defined with complex coefficients in some C2n , we can also define a fitting sphere

13

S2n+1−1 := {v ∈ R2n+1
: ∥v∥ = 1} which intuitively splits complex parameters into their real and imaginary

parts.

Which exact mapping (i.e. parameter splitting method) from C2n to R2n+1 is chosen is irrelevant as long as it
is kept constant throughout all calculations. We will further refer to S2n−1 as SnP,R (where P stands for pure
states) and to S2n+1−1 as SnP,C. Any properties holding for SnP,C not explicitly requiring complex numbers also
hold for SnP,R.

We model these target quantities as objective functions f : SnP,C → R. Intuitively, this gives the sphere a notion
of height by using the value of f at any given point to scale its position vector. The state with max|ψ⟩ f(|ψ⟩)
can thus be thought of as being represented by the highest point on the sphere (similarly for min|ψ⟩ f(|ψ⟩)).
However, searching the entire state space for these points is highly inefficient and exhaustive searches are
outright impossible as there is an infinite number of pure states. A notion of height on a surface levels the
ground for the use of gradient-based optimization methods which can be much more efficient at finding
optimal states.

It is important to note that whilst the general optimization problem posed by sector lengths is convex we
lose this property when focusing on pure states only. Thus, we may get stuck in local extrema, not resulting
in the globally optimal state. Reducing the ratio of such suboptimal results is all about choosing the right
optimization methods / fitting hyperparameters.

4.3 Optimization in symmetric state space

In this section we consider spheres analogous to the previously defined SnP,· for the symmetric states introduced
in Section 3.5. As the number of required parameters is significantly reduced for symmetric states, it enables
us to visualize the real sphere for n = 2, the first case where a 0 ̸= k ̸= n is possible.

On the sphere SnP,C we most likely encounter non-symmetric states. However, for optimization purposes it is
helpful to traverse a manifold containing only states from the space that fulfills all restrictions (in this case
states being symmetric). Building a naive sphere by normalization ∥v∥ = 1 of a vector v ∈ Rn+1 (R2(n+1) for
complex parameters) will not yield quantum states when attempting reconstruction of symmetric states by
multiplication with Dicke states. The coefficient ck will occur exactly

(︁
n
k

)︁
times in the final state vector (as

exactly
(︁
n
k

)︁
permutations of a n-length string with Hamming Weight k exist), but the existing norm assumes it

only does so once.

To work around this problem, we define a new binomial weighted “norm” ∥·∥W that takes the occurrences of
the different ck into account. To ensure receiving valid quantum states upon normalization with ∥·∥W , we
define the normalization by following three steps for a given v ∈ Rn+1:

1. Produce a weighted vW using a diagonal n× n matrixM that contains
(︁
n
k

)︁
in row / column k

2. Normalize vW using the regular ambient norm ∥·∥

3. Regain a non-weighted v′ by usingM−1

Definition 4.1. Given the ambient norm ∥·∥ in a m-dimensional real Hilbert space X, the binomial weighted
norm ∥v∥W of a vector v ∈ X is defined as

∥v∥W := ∥Mv∥ withMij := δij ·
(︃
m

i

)︃
for 0 ≤ i, j ≤ m.

14

The matrixM is referred to as the binomial mapping alongsideM−1 as the reverse binomial mapping.

Note that ∥·∥W is a valid norm as M is clearly invertible. We then use the new weighted norm ∥·∥W to
construct two new spheres for the symmetric states (identified with S) SnS,R and SnS,C analogous to previous
constructions.

Geometrically, the norm ∥·∥W just produces a “squished” version of the hypersphere in Rn+1 when finding
all vectors v ∈ Rn+1 satisfying ∥v∥W = 1. As an example, we present the sphere for n = 2 in the Figs. 4.2
to 4.5. We visualized the sectors A1 and A2 respectively with and without a height mapping to illustrate
the distribution of sector lengths on the sphere. It is important to note that there seem to be significant
symmetries in the sector length distributions. This aligns with the sector lengths being invariant under local
unitary action, thus naturally exhibiting some rotational symmetry.

Figure 4.2: Sphere for S2S,R with a visualization of the
sector A1 without a height mapping.

Figure 4.3: Sphere for S2S,R with a visualization of the
sector A1 with a height mapping.

Figure 4.4: Sphere for S2S,R with a visualization of the
sector A2 without a height mapping.

Figure 4.5: Sphere for S2S,R with a visualization of the
sector A2 with a height mapping.

When using complex vectors, they first have to be “collapsed” from their usual sphere in R2(n+1) to Cn+1

in order to be compatible with ∥·∥W . After normalization, they can be “expanded” again to R2(n+1) for the
remaining optimization step.

Moving on the new spheres SnS,· works differently than discussed for SnP,·. Since we want to use the geodesics
as defined on an “unsquished” sphere (for simplicity) we have to map our positions on SnS,· to the hypersphere

15

defined in the same Euclidean ambient space. For this, we cannot just map our position with the binomial
mapping. Using the binomial mapping will in some cases change the rotation of our position vector relative
to the obtained gradient we use for stepping (see Section 4.4), as not all dimensions are scaled equally. To
be exact, in order to move on the sphere we first need to determine our position on the regular hypersphere
by scaling with its regular norm ∥·∥. Once the regular hypersphere is reached we can move using the same
exponential map as on SnP,·. After movement on the regular hypersphere we determine the target position on
the sphere SnS,· by scaling with the weighted norm ∥·∥W .

4.4 Riemannian Optimization Methods

This section presents the idea of updating the regular ADAM algorithm for usage on the ambient spaces of a
given sphere SnX,Y to calculate gradient based updates to the current position on the manifold. The regular
ADAM algorithm is defined as [9]:

Algorithm 4.6: Original ADAM as defined in [9]. Recommended values: α = 0.001, β1 = 0.9, β2 = 0.999
and ϵ = 10−8

require :α: Stepsize, β1, β2 ∈ [0, 1): Decay rates for moment estimates, ϵ: Numerical stability additive
require :f(θ): Objective function on parameters θ, θ0: Initial parameter vector

1 m0 ← 0
2 v0 ← 0
3 t← 0
4 while θt not converged do
5 t← t+ 1
6 gt ← ∇θf(θt−1)
7 mt ← β1 ·mt−1 + (1− β1) · gt
8 vt ← β2 · vt−1 + (1− β2) · g2t (with (·)2 as the component-wise square)
9 m̂t ← mt/(1− βt1) (Bias-correct first moment estimate)

10 v̂t ← vt/(1− βt2) (Bias-correct second moment estimate)
11 θt ← θt−1 − α · m̂t/

(︁√
v̂t + ϵ

)︁
12 return θt

We then modify the Algorithm 4.6 to consider our objective function f : SnX,Y → R and use the exponential
map defined at the current point xt ∈ SnX,Y for position updates. The gradient gradxt(f) may not be part of
the tangent space TxtSnX,Y but can be projected onto this space in preparation for passing into the exponential
map. As we expect very small movements on the sphere, we can simplify the parallel transport with the
projection of the state onto the next tangent space as previously mentioned.

The gradient required in the resulting Algorithm 4.7 will be computed using methods presented in Chapter 5.
It is important to notice that compared to the regular ADAM implementation, the element-wise square of the
gradient is swapped for an inner product. Leaving it to an element-wise square would lead to accumulating
state vectors requiring parallel transport which could result in negative values incompatible with taking
the root in the next optimization step. This simplifying change may cause this algorithm to lose some of
its adaptivity as the second moment estimate no longer gives values per individual vector entry. However,
as we will show in Chapter 6 it is still efficient enough. This change is inspired by the implementation of
RADAM [21] and VectorADAM [24].

16

Algorithm 4.7: Modified ADAM to work in the ambient space of a Riemannian manifold. Recommended
values stay the same as in Algorithm 4.6
require :α: Stepsize, β1, β2 ∈ [0, 1): Decay rates for moment estimates, ϵ: Numerical stability additive
require :f(x) : SnX,Y → R: Objective function on point x, x0: Initial point vector
require :Πx(v): Projection of v in the ambient space onto TxSnX,Y
require :∥·∥S : Norm of the given SnX,Y

1 m0 ← 0
2 v0 ← 0
3 t← 0
4 while θt not converged do
5 t← t+ 1
6 gt ← Πxt−1(gradf(xt−1))
7 m̃t ← β1 ·mt−1 + (1− β1) · gt
8 ṽt ← β2 · vt−1 + (1− β2) · ∥gt∥2
9 m̂t ← m̃t/(1− βt1) (Bias-correct first moment estimate)

10 v̂t ← ṽt/(1− βt2) (Bias-correct second moment estimate)
11 x̃t ← expxt−1

−α · m̂t/
(︁√
v̂t + ϵ

)︁
12 xt ← xt/∥xt∥S (normalize to ensure staying on the manifold)
13 mt ← Πxt(m̃t) vt ← ṽt
14 return xt

Note that this approach is different from the Riemannian ADAM generalization presented in [21] which aims
to implement ADAM on the manifold itself, not concerning the ambient space. We fix the reference frame
with our canonical coordinate system of the ambient space of SnX,Y . Their concerns about moving reference
frames on a simple coordinate-wise update thus do not apply. Note that due to these concerns, their method
requires additional structure on the manifold in question. In particular, the manifold has to be a cartesian
product of the Riemannian manifolds (Mi, g

i) which is not possible for a hypersphere as in our case.

17

5 Implementation

In this chapter, we highlight important parts of the implementation and explain how we accelerate compu-
tation of both the objective functions from Chapter 3 and their gradients. In particular, we present certain
modifications made to a library for sector length computation helpfully provided by Nikolai Wyderka [25].
The implementation used to obtain the results in Chapter 6 can be found on GitHub [26].

5.1 Automatic Differentiation and Compilation for Python

Regardless of the particular implementation of the objective function used, the main challenge is calculating
the gradient at any given point. Calculating the gradient in an efficient fashion is central to using gradient
based optimization methods. In theory any given function implementation could be manually differentiated,
but keeping the function and the derivative implementation synchronized can be cumbersome and time-
consuming. A common approach to resolving this is using automatic differentiation frameworks, so called
“auto-graders”, in order to programmatically calculate the derivative of any given function. Depending on the
used framework for auto-grading, several benefits and restrictions apply in comparison to other frameworks.

The implementation of the objective function variants employed within this work is given using the library
JAX from Google [27]. This framework is constructed as a project furthering machine learning capabilities by
offering automatic differentiation through a large subset of native Python and Numpy [28] code. Additionally,
JAX can compile most of the automatically differentiable Python and Numpy code just in time (JIT) using
XLA from Tensorflow to kernels fit for execution on hardware accelerators like graphics processing units
(GPUs) and tensor processing units (TPUs). This JIT compilation happens automatically when using a specific
implementation of Numpy packaged with the JAX library, but it can also be used as a tool to reduce larger,
self written functions into single executable kernels.

JAX performs its JIT compilation using a two-step process. First, native Python and Numpy code is lowered to
XLA primitives. In the special implementation of the Numpy library given by JAX the lowering step may have
been performed manually beforehand to ensure an efficient translation for highly used numerical operations.
The second stage compiles the sequence of XLA primitives which could also be individually compiled and
executed on a hardware accelerator in a process called fusion. The result is a single operation, enabling it to be
launched in a single call to the hardware accelerator. Removing the need for synchronization and additional
kernel launches by the orchestrating CPU significantly reduces the overhead produced by an implementation
using a high count of singular primitives to be executed on a hardware accelerator. This single operation is
then compressed further and internally optimized by removing write-outs of intermediate data structures to
memory, instead streaming results directly to their using sinks. Together, both optimizations can speed up
native Python code significantly by efficiently using compute and bandwidth resources available on modern
hardware accelerators. However, fusion into a single operation also means that at any state in the compiled
kernel execution the intermediate data structures produced by the program must fit into memory given

18

onboard the hardware accelerator. Thus, JAX often relieves pressure when dealing with runtime scaling issues
with by shifting it to memory scaling issues as hardware accelerators often come with less on board memory
than is given in main memory.

Building and improving the capability for automatic differentiation inside JAX is an ongoing research topic.
Currently, differentiation as a JAX function transformation works by wrapping function arguments in tracer
objects which record any operation they are a part of. When creating intermediate data structures like
computing the density matrix from a state vector in preparation for computing its reduced density matrices,
tracer objects will multiply and fill in the entire density matrix, leading to an exponentially scaling memory
overhead. As will be explained in Chapter 6, this memory overhead will limit the number of qubits n and the
order k for which computations of the sector lengths are feasible with current hardware.

5.2 Implementing state optimization

We obtained a Python library from Nikolai Wyderka [25] that can compute sector lengths in terms of purities
as explained in Section 3.3. This library works for native Python calls, but certain parts of it needed rewrites
in order to be fully compilable with JAX transformations. As an example, the nature of JAX tracers disallows
them to be naturally cast to integers or used for array indexing.

The relevant code given by the library is extracted and rewritten to fit the requirements above. Additionally,
the optimizations for symmetric states and reducing the number of purities that need computation from
Section 3.4 were implemented.

We want to highlight that we store n + 1 parameters for a symmetric state as mentioned in Section 3.5.
From these parameters, the full state vector with 2n parameters needs to be reconstructed for computation
of sector lengths. Since this reconstruction will be executed at every step, we precompute the Dicke state
for each of the n + 1 parameters. Using the obtained library, computing the Dicke state Dn

k necessitates
constructing a binary string 0 . . . 0⏞ ⏟⏟ ⏞

n−k

1 . . . 1⏞ ⏟⏟ ⏞
k

and finding every permutation of it. These combinations are then

turned into the computational basis states corresponding to the binary string, added together and normalized.
However, constructing and handling these binary strings is quite expensive. Instead, we construct the integer
set {2i|i ∈ {0 ≤ i < n}} and receive all its subsets of k elements. For each subset, we sum its elements to
receive an index in the general state vector in which an excitation appears in the Dicke state. Using integers
instead of strings and avoiding unnecessary state construction enables scaling computation of the Dicke states
beyond n = 10.

Another important part of the implementation is the exponential map which we use to move on the spheres
constructed in Sections 4.2 and 4.3. We can think of the geodesic starting at some anchor x with an initial
tangent direction 0 ̸= v ∈ TxSnX,Y as a great circle of speed ∥v∥ in the Euclidean plane that is spanned by x
and v. Thus, the exponential map for this geodesic is given by the following closed form:

γ(t) := cos(∥v∥t)x+ sin(∥v∥t) v

∥v∥
.

Finally, the implementation of our modified algorithm from Section 4.4 is inspired by the “geoopt” library [29]
which implements the RADAM algorithm presented in [21] for the PyTorch [30] machine learning framework.
We used the framework “Hydra” [31] for configuration and batch dispatching of our optimization runs.

19

6 Experiments

In this chapter we will use the sector length computation methods from Chapter 3, the new optimization
technique from Chapter 4, and our efficient implementation from Chapter 5 to explore bounds on sector
lengths. In particular, we present findings that support Conjecture 3.5. Additionally, we apply different
restrictions to the optimization and record their impact on optimization speed, resource usage, and the
achieved sector length values. We also evaluate several potential improvements to the optimization. Lastly, we
compare our bounds on sector lengths that we found numerically to those produced by shadow inequalities.

6.1 Exploring sector lengths

To recall, the main goal of this thesis is to support the following Conjecture 3.5 by providing lower bounds
and suggesting n0 for different k.

Conjecture (See Conjecture 3.5). For all k there exists a n0 such that for all n ≥ n0, Ak ≤
(︁
n
k

)︁
holds for every

state of n qubits.

Indeed, we found such n0 using the methods described in Chapters 3 and 4:

Result 6.1. We present our suggested values of n0 for different k, supporting the Conjecture 3.5:

Sector A2 A3 A4 A5 A6 A7 A8 A9

LB on n0 3 5 8 10 11 13 15 > 16

Even if some of these values do not prove correct and n0 is even higher or does not exist these values still
constitute a lower bound as for every n′ < n0 for our suggested n0,

(︁
n′

k

)︁
does not constitute a bound on the

sector length Ak. Note that the values for k = {2, 3} are already proven correct as their relevant state spaces
have been fully characterized [6].

We also give an example for a full optimization table using k = 4 for different n in Table 6.2. The optimization
runs used to obtain this optimization table are presented in Fig. 6.3. Upper bounds up to n = 6 are already
known [32], but can be recreated here and matched with a lower bound. The shadow inequalities discussed
in Section 3.2 only achieve non-tight upper bounds for n > 6 [6]. For the first few n > 6 we provide lower
bounds on the maximal values of A4 and suggest these bounds are tight.

For k = 9 we managed to investigate maximal values up to n = 16 and found that they still exceed
(︁
n
k

)︁
, thus

we conclude that n0 > 16. These investigations were done with the simplifications discussed in Section 6.2.
Even with those simplifications however, scaling this to higher n quickly becomes difficult.

20

n max|ψ⟩A4|ψ⟩ nCk

4 9 1
5 15 5
6 45 15
7 45 35
8 70 70
9 126 126
10 210 210

Table 6.2: Maximal values of A4 attained using unconstrained optimization methods from Chapter 4 for various n. Note
that for n ≥ 8, A4 ≤

(︁
n
4

)︁
appears to hold, thus we suggest n0 = 8 for k = 4.

100 101 102 103

0

50

100

150

200

Step

A
4

n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

Figure 6.3: Maximal values from optimization runs for A4. Each run set contains 100 optimization runs.

Due to the number of individual values during calculation increasing much faster than the magnitude of
Ak for rising n and k, calculating Ak involves increasingly smaller numbers. This quickly leads to precision
issues, where optimization is not effective anymore as the range of possible stepping directions that are
indistinguishable with regular 32-bit precision floating point numbers (further referred to as float32) becomes
quite large. The only option to combat this is increasing precision by switching to 64-bit precision floating
point numbers (further referred to as float64).

We show the impact of switching from float32 to float64 values in Fig. 6.4. We observe a much higher stability
and faster convergence using float64 as less stepping directions are indistinguishable. Thus, with float64 values
the intended stepping direction is more resistant to numerical error. Note that such great discrepancies usually
only occur for k ≥ 7. For the comparison presented we leveraged the improvement in performance through
restriction to symmetric states and real parameters as introduced in Section 6.2 since properly exploring
sector A7 takes a long time without them. However, several test runs showed that the difference in stability is

21

observable for unrestricted optimization as well.

800 820 840 860 880 900 920 940 960 980 1,000
319.8

319.85

319.9

319.95

Step

A
7

float32
float64

Figure 6.4: Comparison of mean float32 and float64 optimization runs for n = 10 and k = 7 zoomed in on the last 200
steps. 10 runs were used for each graph.

Note that this change naturally increases the time and memory required for some of the steps in an optimization
run. We display the time difference for optimization runs on A7 in both the lowering and the raw optimization
time in Fig. 6.5.

7 8 9 10

20

40

60

n

lo
w
er
in
g
tim

e
[s
] float32

float64

7 8 9 10

0

100

200

300

400

n

op
tim

iz
at
io
n
tim

e
[s
] float32

float64

Figure 6.5: Comparison of mean time required in optimization runs in A7 for float32 and float64 respectively. Note
that the lowering time barely increases, while the optimization time is heavily impacted by the elevated
precision. Values are obtained using 10 runs for each graph.

We also record the peak memory footprint in Fig. 6.6 which naturally increases with double precision. The
JAX library itself consumes about 238 Mebibyte (MiB) of hardware accelerator memory and a small quantity
of CPU memory. We do not list the required CPU memory as the requirements for hardware accelerator
memory scale much faster. When increasing n one will rather run out of hardware accelerator memory than
CPU memory. If not specified otherwise, every result presented in this thesis has been obtained using 64-bit
precision.

6.2 Exploring optimizations

Even without switching to float64, the time required to do a full optimization run including lowering,
compilation, and differentiation of the sector length objective function quickly becomes infeasible with rising
n and k. The time allocated for the preparatory steps before the optimization itself quickly amounts to a large

22

7 8 9 10

200

400

600

800

1,000

1,200

n

m
em

or
y
[M

iB
]

float32
float64

7 8 9 10 11 12

0

0.2

0.4

0.6

0.8

1

1.2

·104

n

m
em

or
y
[M

iB
]

float64

Figure 6.6: Left: comparison of peak memory required in optimization runs in A7 for float32 and float64 respectively.
Note that for the JAX library, a base value of 238 MiB is required. Right: peak memory required in
optimization runs in A7 with float64 for higher n.

part of the total runtime. Thus, reducing the time spent with such preparatory steps is paramount to speeding
up overall computations across many runs.

As discussed in Chapter 3, computation of sector lengths may be optimized in various fashions. In particular,
we can compute sector lengths over purities of system reductions instead of using expectation values with full
n-Pauli operators (referring to the Ξk which are expensive to compute and store). However, some possibilities
for optimization have the benefit of reducing the size of the state space searched during optimization using the
techniques discussed in Chapter 4. Good instances of this are the reduction of state space by restricting the
optimization to only use real parameters (using Sn·,R) or symmetric states (using SnS,·). Naturally, the question
arises whether sector lengths reachable without any restrictions are still reachable with restrictions in place.
As an example, restricting the search to pure states does not influence the range of attainable sector length
values [2].

To investigate the impact of further restricting the searchable state space, we first compare optimized values
specifically for the sector length A4, as the obtainable state space structures for the first two sector lengths
of interest A2 and A3 are fully characterized already [6]. Obtained maximal values for sector length A4 for
different n and with different restricted state sets are displayed in Table 6.8. For all n but n ∈ 6, 7, obtained
values for all different configurations coincide. For the remaining n ∈ 6, 7, we obtain the following result:

Result 6.7. Differing maximal values for unrestricted, pure state space and restricted, symmetric states space (see
Table 6.8) already show that searching symmetric state space may be insufficient for obtaining the highest possible
sector length in every (n, k) configuration.

Similar to Table 6.8, Table 6.9 presents obtained maximal values of A7 for different n. Note that although
there is no visible impact on the attainable maxima of restricting optimizations to real parameters, we find in
our experiments that restrictions in this manner most often result in subpar performance in terms of speed of
convergence when compared to unrestricted optimizations. This effect is usually more noticeable when not
restricting optimizations to symmetric states. A possible reason for this behaviour could be the additional
degrees of freedom that are given with complex parameters in comparison to real parameters.

For k = 7, only n ≤ 10 are listed here, as scaling computations past this threshold for less restricted (in
particular not only restricted to symmetric states) optimizations quickly becomes infeasible. This is mostly due
to the lowering and compilation steps for the objective function requiring exponentially more time with rising

23

n |ψ⟩ ∈ SnP,C |ψ⟩ ∈ SnP,R |ψ⟩ ∈ SnS,C |ψ⟩ ∈ SnS,R nCk

4 9 9 9 9 1
5 15 15 15 15 5
6 45 45 35 35 15
7 45 45 37.857 37.857 35
8 70 70 70 70 70
9 126 126 126 126 126

Table 6.8: Numerical max|ψ⟩A4(|ψ⟩) for different n ≤ 9 and |ψ⟩ ∈ S for S ∈ {SnP,C,SnP,R,SnS,C,SnS,R}. Values were
obtained using 20 optimization runs in each configuration. For comparison, we also display nCk here. Note
that all values conincide at nCk for n ≥ n0 using our suggested n0 = 8 for A4.

n |ψ⟩ ∈ SnP,C |ψ⟩ ∈ SnP,R |ψ⟩ ∈ SnS,C |ψ⟩ ∈ SnS,R
7 64 64 64 64
8 84.571 84.571 84.571 84.571
9 182 182 137.111 137.111
10 360 360 320 320

Table 6.9: Numerical max|ψ⟩A7(|ψ⟩) for different n ≤ 10 and |ψ⟩ ∈ S for S ∈ {SnP,C,SnP,R,SnS,C,SnS,R}. Values were
obtained using 20 optimization runs in each configuration.

n independent of k. As a simple improvement in a multi-run scenario one might add JAX-native compilation
caching with which JAX will recognize equivalence between already compiled functions and the function to
be compiled after the lowering step. This still requires the function to be fully lowered every run and fully
compiled at least once. While we used a compilation cache for most optimization runs, we disabled it for time
and memory measurements.

7 8 9 10
0

20

40

60

n

lo
w
er
in
g
tim

e
[s
]

pure + complex
pure + real

symmetric + complex
symmetric + real

7 8 9 10
0

50

100

150

n

co
m
pi
la
tio

n
tim

e
[s
] pure + complex

pure + real
symmetric + complex

symmetric + real

7 8 9 10

0

100

200

300

400

n

op
tim

iz
at
io
n
tim

e
[s
] pure + complex

pure + real
symmetric + complex

symmetric + real

Figure 6.10: Comparison of mean time required in optimization runs in A7 for different restrictions. We intentionally
leave out grading time as it is implied by individually lowering and grading the objective function. Values
are obtained using 10 runs for each graph.

However, the impact of restricting optimization is muchmore noticeable. Restricting optimizations to symmetric
states has a significant impact on all phases of a full optimization run due to requiring only one marginal to be
computed (see Theorem 3.12). We record this impact in Fig. 6.10. Note that we leave out grading time, as we
lower and compile the sector length objective function individually which eliminates grading time. When the
steps are computed individually, both lowering and compiling the function have to be done with a given data
sample and the steps automatically grade the function. Restricting optimizations to real parameters does not

24

have such a significant impact on lowering and compilation as the difference in computational complexity is
minimal. However, restriction to real parameters still incurs a noticeable speedup for pure optimization time.

With the restriction to symmetric states, our limiting factor is not the time available for compilation, but
the memory available to our hardware accelerators. The restrictions do not eliminate the memory scaling
problem but merely delay it. We display the peak memory required for optimization runs on A7 for select n in
Fig. 6.11 on the left side. Note that for restriction to symmetric states, the difference in required memory is so
significant that it enables us to scale computations to a few higher n than previously. We record the memory
required for higher n and A7 on the right side of Fig. 6.11.

7 8 9 10

200

400

600

800

1,000

1,200

n

m
em

or
y
[M

iB
]

pure + complex
pure + real

symmetric + complex
symmetric + real

7 8 9 10 11 12 13 14 15

0

0.2

0.4

0.6

0.8

1

1.2

·104

n

m
em

or
y
[M

iB
]

pure + complex
symmetric + real

Figure 6.11: Left: comparison of peak memory required in optimization runs in A7 for different restrictions respectively.
Note that for the JAX library, a base value of 238 MiB is required. Right: peak memory required in
optimization runs in A7 with restriction to symmetric states.

We can formulate the following observation based on the values shown for k = 4, 7 in Tables 6.8 and 6.9 and
our remaining sufficiently investigated k ≤ 8:

Observation 6.12. Consider a specific configuration of n, k. If using unrestricted optimization we find a maximal
value exceeding

(︁
n
k

)︁
, we also find the maximal value exceeding

(︁
n
k

)︁
using all three restriction combinations.

Additionally, we notice the following:

Remark 6.13. Naturally, if max|ψ⟩Ak(|ψ⟩)) >
(︁
n
k

)︁
for a fixed n holds in restricted optimization, it must also

hold in unrestricted optimization, as restricted state space is by definition fully contained in unrestricted state
space.

Observation 6.12 and Remark 6.13 lead us to the following conjecture:

Conjecture 6.14. The maximal value of Ak attainable for a given n, k using states in SnP,C exceeds
(︁
n
k

)︁
if and

only if the maximal value attainable using states in the restricted space X ∈ {SnP,R,SnS,C,SnS,R} also exceeds
(︁
n
k

)︁
.

More formally, this can be expressed as

∀n, k with n > k :

max
|ψ⟩∈Sn

P,C

Ak(|ψ⟩) >
(︃
n

k

)︃
⇔ max

|ψ⟩∈Sn
P,R

Ak(|ψ⟩) >
(︃
n

k

)︃
⇔ max

|ψ⟩∈Sn
S,C

Ak(|ψ⟩) >
(︃
n

k

)︃
⇔ max

|ψ⟩∈Sn
S,R

Ak(|ψ⟩) >
(︃
n

k

)︃
.

25

Originally, just by using Remark 6.13, we are able to use the speedup from optimization with state space
restriction to our benefit. We can quickly raise the lower bound on n0 as we eliminate candidates for it. If
Conjecture 6.14 proves true, we can also soundly investigate surrounding n for some candidate for n0 without
leaving restricted state space. This in itself would be a great improvement regarding memory consumption and
runtime, especially in combination with optimizations for symmetric states proposed at the end of Section 3.4.
Note that this conjecture is in particular not in conflict with Result 6.7 as we still do not require that for every
configuration of (n, k), using restricted optimizations has no impact on the attainable maxima.

6.3 Kickstarting state optimization

During optimization runs for the specific configuration k = 5, n = 9, we found a discrepancy between the
possible performance of optimizations with and without restriction to symmetric state space. Symmetric
state space optimizations consistently achieved values for A5 > 126, though by a small amount, whereas
unrestricted optimization was consistently bound by A5 ≤ 126 as can be seen in Fig. 6.15. As such results are
unsound we have to search for methods that boost unrestricted optimization sufficiently.

One such method we found is kickstarting the optimization by searching through unrestricted state space, but
starting with a random symmetric state instead of a random unrestricted state. In the scenario k = 5, n = 9,
the maximal value is likely to be attained by a symmetric state. Starting with a symmetric state in such cases
supports the optimization in reaching these maximal states. This change in start values allowed unrestricted
optimization to reach values of A5 > 126 as well, which soundly proved n0 > 9 for k = 5 as

(︁
9
5

)︁
= 126. In

Fig. 6.15 we display this impact of kickstarting as well. Note that the resulting states after such optimizations
are not necessarily symmetric themselves.

200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1,000

125.95

126

126.05

126.1

Step

A
5

unrestricted w.o. kickstarting unrestricted w. kickstarting symmetric

Figure 6.15: Comparison of mean optimization runs for A5 with n = 9 zoomed in on the last 800 steps. 10 runs were
used for each graph.

This method of kickstarting unrestricted optimization has no apparent effect on most configurations. However,
in scenarios where the maximal value is not attained by a symmetric state, kickstarting can have a negative
impact. Take as an example the configuration k = 4, n = 7, where kickstarting the unrestricted optimization
limited achieved values to A4 ≤ 37.857, exactly the maximal value attained for symmetrically restricted
optimizations (see Table 6.8). Not using kickstarting returned the unrestricted optimizations to its true
maximally attained value of A4 ≤ 45. This impact on k = 4, n = 7 is validated using 100 optimization runs
both for enabling and disabling kickstarting. We display the maximal values attained in those runs in Fig. 6.16.

26

0 100 200 300 400 500 600 700 800 900 1,000
30

35

40

45

Step

A
4

unrestricted w.o. kickstarting unrestricted w. kickstarting symmetric

Figure 6.16: Comparison of different optimization runs for A4 with n = 7. 100 runs were used for each graph.

Kickstarting is also possible between different restrictions of state space, as long as the state space used to
provide the initial state is fully contained in the state space in which to optimize. Kickstarting might have
benefits when used with the restriction of state space to real state parameters in comparison to its unrestricted
dual with complex state parameters. This needs to be validated further once a configuration with a similarly
unsound discrepancy to k = 5, n = 9 between real and complex parameters is found.

To summarize, we can use kickstarting when observing an unsound discrepancy between less and more
restricted optimizations, i.e. when the more restricted optimization achieved better values for a sector length
than its less restricted counterpart. However, kickstarting can also have a negative impact on the achievable
values for this less restricted optimization. Thus, we recommend that kickstarting is only used to investigate
unsound values.

6.4 Comparison to shadow inequalities

As discussed in Section 3.2, shadow inequalities are a useful tool for finding upper bounds to correlations that
can be found in a given state. These shadow inequalities can be used to find n0 for k ∈ {2, 3}. For higher k,
they can be obtained but seem to fail to provide any upper bound for n0 when k is even. For sector length A4,
it is proven that shadow inequalities are insufficient to show our suggested n0 = 8 [6].

For odd k ≤ 13, we were able to leverage shadow inequalities to find upper bounds on n0. However, when
investigating the upper bounds produced by shadow inequalities, it becomes evident that our suggested values
for n0 are significantly lower than approximated by the current upper bounds. As an example, we obtained
our suggested n0 = 10 for A5, but shadow inequalities only manage to lower the upper bound to n0 ≤ 12.
This is especially true for higher k, as presented in Table 6.17.

6.5 Additional experiments

In addition to the impact on optimization of different state space restrictions investigated so far, one can alter
the algorithms used for optimization. In particular, instead of fully implementing the modified ADAM from

27

k LB on n0 UB on n0
3 5 5
5 10 12
7 13 20
9 >16 29

Table 6.17: Lower bounds on n0 for different odd k where we suggest these values as valid n0. Additionally, we display
upper bounds on n0 obtained from shadow inequalities.

Algorithm 4.7, requiring implementation of parallel transport on the manifold, the simpler SGD algorithm
in its Riemannian implementation [20] could be used. However, the performance of Riemannian stochastic
gradient descent (RSGD) seems subpar compared to our modified ADAM according to the earliest of our
experiments. Whilst RSGD may come close to our found maximal values faster than ADAM, it lacks the
stability and long-term proximity to the target value that ADAM provides.

Regardless of the concrete optimization method used, one can alter the step size (often called learning rate
in the context of optimization methods) of movement on the manifolds. Specifically, the step size could
be altered with each iteration, implementing e.g. a decaying schedule. This modification is also known as
learning rate decay. It could improve performance of the optimization methods since it often improves results
in machine learning applications [33]. In our experiments, we observed no noticeable improvement from
using e.g. an exponential decay schedule. Choosing the step size of 10−2 which is recommended for most
ADAM applications seems to give good results for most of the configurations we investigated.

These additional results and suggestions need to be investigated further and validated independently.

28

7 Future extensions

The most promising proposed improvement is that of removing the dependency of sector length computation
of symmetric states on calculation of reduced density matrices (see Section 3.5). This would increase the
scalability of sector length explorations and elimination of n0 candidates (if Conjecture 6.14 proves true, also
suggestion of n0) by a large margin.

However, we can also improve our computation by other means. As an example, we can try to cache as many
parts of the computation as possible after computing the objective function and its derivative once, reducing
the time overhead besides the optimization steps. This may be realized with a method in Python development
called pickling, in which an object can be serialized to a byte stream, allowing it to be saved to an external file.
Additionally, computation of the objective function and its derivative may be moved to machines with higher
single-thread performance while optimization remains on machines with higher hardware accelerator and
parallelization performance. This would also require migrating from JIT to ahead of time (AOT) compilation.
Parallelization of lowering and compilation may be possible with the recent movement of removing the Global
Interpreter Lock of Python which previously prevented any parallel interpretation of python code and thus
JAX compilation. Note that JAX support for such means and operations is still sparse.

As mentioned in Section 6.3, kickstarting optimizations using complex parameters with states only using
real parameters may become useful. However, unsound discrepancies between real and complex parameters
are first needed to observe any improvements. Alternatively, for improvements to the optimization methods
different step sizes on the manifolds as well as non-constant step size scheduling may prove useful and need
to be investigated.

With all computations covered in this thesis, objective functions were formed from expressions yielding a single
sector length for some n, k in qubits. Generalising such computations and the concept of sector lengths to
qudits is possible, thus the methods presented here deserve to be generalised as well. For example, the spheres
used to represent usable states with or without some restrictions themselves can easily be generalised to take
an additional parameter d. This also motivates search in spaces which are further or differently restricted, such
as n-separable state space. Some numerical investigations of bounds on sector lengths with separable states
have already been made [32]. However, these investigations were mostly done through informed guesses,
thus limiting their power compared to automated optimization. Implementing additional restrictions on state
space may prove useful and needs investigation as such restrictions may allow speeding up optimizations even
further.

Finally, optimizations can be generalised from a single sector length value to arbitrary expressions of such
values by simply combining multiple individual objective functions into a single, larger objective function. Such
expressions could be entropies or entanglement measures [6], enabling raising suprema on those measures
and further understanding their complex behaviour and structure.

29

8 Conclusions

We introduced new optimization methods for arbitrary pure quantum states given real-valued objective
functions in Chapter 4 and implemented those objective functions for individual sector lengths in Chapters 3
and 5. Additionally, we discussed possible optimizations to the objective functions that significantly reduced
the amount of computational resources needed for them. With the new optimization methods, we numerically
investigated maximally attainable values of individual sector lengths for different configurations of (n, k)
in Section 6.1. Using these maximally attainable values, for 4 ≤ k ≤ 8 we supported the existence of a
threshold n0 ≤ n at and after which Ak ≤

(︁
n
k

)︁
holds for states of n parties by suggesting values for n0 in

Result 6.1. For k = 9, we provided a lower bound on this threshold n0. Furthermore, we studied the impact
of restricting optimizations on the attainable maximal values in Section 6.2. Using these results, we proposed
an equivalence of certain restrictions with unrestricted optimizations for the purposes of finding n0 for a given
k. We showed that restricting the optimization significantly improves the scalability of our approach both in
terms of memory usage and overall time required. Lastly, we compared the results of our approach to upper
bounds on n0 produced by shadow inequalities in Section 6.4 and investigated different modifications to this
approach in Sections 6.3 and 6.5.

This thesis gives many points of extension for future work, including deeper investigation of different similar
optimization methods and the impact of their hyperparameters. We also propose extension of the methods
discussed in this thesis to expressions with multiple sector lengths, yielding methods for optimization of entire
entanglement and entropy relations.

30

Algorithms, Figures and Tables

List of Algorithms

4.6 Original ADAM as defined in [9]. Recommended values: α = 0.001, β1 = 0.9, β2 = 0.999 and
ϵ = 10−8 . 16

4.7 Modified ADAM to work in the ambient space of a Riemannian manifold. Recommended values
stay the same as in Algorithm 4.6 . 17

List of Figures

4.2 Sphere for S2S,R with a visualization of the sector A1 without a height mapping. 15

4.3 Sphere for S2S,R with a visualization of the sector A1 with a height mapping. 15

4.4 Sphere for S2S,R with a visualization of the sector A2 without a height mapping. 15

4.5 Sphere for S2S,R with a visualization of the sector A2 with a height mapping. 15

6.3 Maximal values from optimization runs for A4. Each run set contains 100 optimization runs. . 21

6.4 Comparison of mean float32 and float64 optimization runs for n = 10 and k = 7 zoomed in on
the last 200 steps. 10 runs were used for each graph. 22

6.5 Comparison of mean time required in optimization runs inA7 for float32 and float64 respectively.
Note that the lowering time barely increases, while the optimization time is heavily impacted
by the elevated precision. Values are obtained using 10 runs for each graph. 22

6.6 Left: comparison of peak memory required in optimization runs in A7 for float32 and float64
respectively. Note that for the JAX library, a base value of 238 MiB is required. Right: peak
memory required in optimization runs in A7 with float64 for higher n. 23

6.10 Comparison of mean time required in optimization runs in A7 for different restrictions. We
intentionally leave out grading time as it is implied by individually lowering and grading the
objective function. Values are obtained using 10 runs for each graph. 24

6.11 Left: comparison of peak memory required in optimization runs in A7 for different restrictions
respectively. Note that for the JAX library, a base value of 238 MiB is required. Right: peak
memory required in optimization runs in A7 with restriction to symmetric states. 25

31

6.15 Comparison of mean optimization runs for A5 with n = 9 zoomed in on the last 800 steps. 10
runs were used for each graph. 26

6.16 Comparison of different optimization runs for A4 with n = 7. 100 runs were used for each graph. 27

List of Tables

6.2 Maximal values of A4 attained using unconstrained optimization methods from Chapter 4 for
various n. Note that for n ≥ 8, A4 ≤

(︁
n
4

)︁
appears to hold, thus we suggest n0 = 8 for k = 4. . . 21

6.8 Numerical max|ψ⟩A4(|ψ⟩) for different n ≤ 9 and |ψ⟩ ∈ S for S ∈ {SnP,C,SnP,R,SnS,C,SnS,R}.
Values were obtained using 20 optimization runs in each configuration. For comparison, we
also display nCk here. Note that all values conincide at nCk for n ≥ n0 using our suggested
n0 = 8 for A4. 24

6.9 Numerical max|ψ⟩A7(|ψ⟩) for different n ≤ 10 and |ψ⟩ ∈ S for S ∈ {SnP,C,SnP,R,SnS,C,SnS,R}.
Values were obtained using 20 optimization runs in each configuration. 24

6.17 Lower bounds on n0 for different odd k where we suggest these values as valid n0. Additionally,
we display upper bounds on n0 obtained from shadow inequalities. 28

32

Abbreviations

Abbreviations

Notation Description Page List

AME Quantum state such great entanglement, that all reduced systems
of at most half the particles are maximally mixed.

1

AOT Compilation of source code separate from its execution; planned
compiliation.

29

GPU Hardware accelerator usually used for graphical processing. Effi-
cient at highly parallel computations.

18

JIT Compilation of source code right before its execution; on demand
compilation.

18, 29

MiB 220 bytes. Note the difference to the Megabyte, which is 10002
bytes.

22, 23, 25

RSGD Stochastic gradient descent algorithm class adapted to be used
with Riemannian manifolds.

28

SDP Semi Definite Program 12
SGD Gradient based optimization algorithm class often used in machine

learning applications.
12, 28

TPU Hardware accelerator usually used for tensor applications. De-
veloped by Google specifically for Tensorflow. See https://cloud.
google.com/tpu.

18

33

https://cloud.google.com/tpu
https://cloud.google.com/tpu

Bibliography

[1] Valerie Coffman, Joydip Kundu, and William K. Wootters. “Distributed entanglement.” In: Physical
Review A 61.5 (Apr. 2000). url: https://doi.org/10.1103%2Fphysreva.61.052306.

[2] Hans Aschauer et al. Local invariants for multi-partite entangled states allowing for a simple entanglement
criterion. 2004.

[3] Felix Huber, Otfried Gühne, and Jens Siewert. “Absolutely Maximally Entangled States of Seven Qubits
Do Not Exist.” In: Phys. Rev. Lett. 118 (20 May 2017), p. 200502. url: https://link.aps.org/doi/10.
1103/PhysRevLett.118.200502.

[4] C. Klöckl and M. Huber. “Characterizing multipartite entanglement without shared reference frames.” In:
Phys. Rev. A 91 (4 Apr. 2015), p. 042339. url: https://link.aps.org/doi/10.1103/PhysRevA.91.042339.

[5] R. M. Gingrich. “Properties of entanglement monotones for three-qubit pure states.” In: Phys. Rev. A 65
(5 Apr. 2002), p. 052302. url: https://link.aps.org/doi/10.1103/PhysRevA.65.052302.

[6] N Wyderka and O Gühne. “Characterizing quantum states via sector lengths.” In: Journal of Physics A:
Mathematical and Theoretical 53.34 (July 2020), p. 345302. url: https://doi.org/10.1088%2F1751-
8121%2Fab7f0a.

[7] Christopher Eltschka et al. “Exponentially many entanglement and correlation constraints for multipar-
tite quantum states.” In: Phys. Rev. A 98 (5 Nov. 2018), p. 052317. url: https://link.aps.org/doi/10.
1103/PhysRevA.98.052317.

[8] Felix Huber et al. “Bounds on absolutely maximally entangled states from shadow inequalities, and
the quantum MacWilliams identity.” In: Journal of Physics A: Mathematical and Theoretical 51.17 (Mar.
2018), p. 175301. url: https://doi.org/10.1088%2F1751-8121%2Faaade5.

[9] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. 2017.
[10] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information. Cambridge

University Press, 2000.
[11] Eric M. Rains. Polynomial invariants of quantum codes. 1997.
[12] A.R. Calderbank et al. “Quantum error correction via codes over GF(4).” In: IEEE Transactions on

Information Theory 44.4 (1998), pp. 1369–1387.
[13] E.M. Rains. “Quantum shadow enumerators.” In: IEEE Transactions on Information Theory 45.7 (1999),

pp. 2361–2366.
[14] Felix Huber and Simone Severini. “Some Ulam’s reconstruction problems for quantum states.” In:

Journal of Physics A: Mathematical and Theoretical 51.43 (Sept. 2018), p. 435301.
[15] F.J. MacWilliams, F.J. MacWilliams, and N.J.A. Sloane. The Theory of Error-Correcting Codes. Elsevier

Science, 1978.
[16] Eric M. Rains. Quantum Weight Enumerators. 1996.

34

https://doi.org/10.1103%2Fphysreva.61.052306
https://link.aps.org/doi/10.1103/PhysRevLett.118.200502
https://link.aps.org/doi/10.1103/PhysRevLett.118.200502
https://link.aps.org/doi/10.1103/PhysRevA.91.042339
https://link.aps.org/doi/10.1103/PhysRevA.65.052302
https://doi.org/10.1088%2F1751-8121%2Fab7f0a
https://doi.org/10.1088%2F1751-8121%2Fab7f0a
https://link.aps.org/doi/10.1103/PhysRevA.98.052317
https://link.aps.org/doi/10.1103/PhysRevA.98.052317
https://doi.org/10.1088%2F1751-8121%2Faaade5

[17] Peter Shor and Raymond Laflamme. Quantum MacWilliams Identities. 1996.
[18] R. H. Dicke. “Coherence in Spontaneous Radiation Processes.” In: Phys. Rev. 93 (1 Jan. 1954), pp. 99–

110. url: https://link.aps.org/doi/10.1103/PhysRev.93.99.
[19] Paul Skrzypczyk and Daniel Cavalcanti. Semidefinite Programming in Quantum Information Science. IOP

Publishing, Mar. 2023. url: https://doi.org/10.1088%2F978-0-7503-3343-6.
[20] Silvere Bonnabel. “Stochastic Gradient Descent on Riemannian Manifolds.” In: IEEE Transactions on

Automatic Control 58.9 (Sept. 2013), pp. 2217–2229. url: https://doi.org/10.1109%2Ftac.2013.
2254619.

[21] Gary Bécigneul and Octavian-Eugen Ganea. Riemannian Adaptive Optimization Methods. 2019.
[22] M. Spivak. A Comprehensive Introduction to Differential Geometry. A Comprehensive Introduction to

Differential Geometry Bd. 4. Publish or Perish, Incorporated, 1975. url: https://books.google.de/
books?id=clbvAAAAMAAJ.

[23] Joal W. Robbin and Dietman A. Salamon. Introduction to differential geometry. Oct. 2022.
[24] Selena Ling, Nicholas Sharp, and Alec Jacobson. VectorAdam for Rotation Equivariant Geometry Opti-

mization. 2022.
[25] Nikolai Wyderka. “Code provided by Nikolai Wyderka for calculation of sector lengths with purities.”
[26] Maximilian Rüsch. Implementation for the methods described in this thesis. GitHub. Contains the JAX

and original version of the library provided by Nikolai Wyderka. 2023. url: https://github.com/
maximilianruesch/sector-lengths/releases/tag/thesis-v1.

[27] James Bradbury et al. JAX: composable transformations of Python+NumPy programs. Version 0.3.13.
2018. url: http://github.com/google/jax.

[28] Charles R. Harris et al. “Array programming with NumPy.” In: Nature 585.7825 (Sept. 2020), pp. 357–
362. url: https://doi.org/10.1038/s41586-020-2649-2.

[29] Max Kochurov, Rasul Karimov, and Serge Kozlukov. Geoopt: Riemannian Optimization in PyTorch. 2020.
[30] Adam Paszke et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. 2019.
[31] Omry Yadan. Hydra - A framework for elegantly configuring complex applications. GitHub. 2019. url:

https://github.com/facebookresearch/hydra.
[32] Nikolai Wyderka. “Table provided by Nikolai Wyderka containing several approximations of bounds

found on sector lengths.” Most values were found using educated guesses instead of automated
optimization.

[33] Yimin Ding. “The Impact of Learning Rate Decay and Periodical Learning Rate Restart on Artificial
Neural Network.” In: Proceedings of the 2021 2nd International Conference on Artificial Intelligence
in Electronics Engineering. AIEE ’21. Phuket, Thailand: Association for Computing Machinery, 2021,
pp. 6–14. url: https://doi.org/10.1145/3460268.3460270.

35

https://link.aps.org/doi/10.1103/PhysRev.93.99
https://doi.org/10.1088%2F978-0-7503-3343-6
https://doi.org/10.1109%2Ftac.2013.2254619
https://doi.org/10.1109%2Ftac.2013.2254619
https://books.google.de/books?id=clbvAAAAMAAJ
https://books.google.de/books?id=clbvAAAAMAAJ
https://github.com/maximilianruesch/sector-lengths/releases/tag/thesis-v1
https://github.com/maximilianruesch/sector-lengths/releases/tag/thesis-v1
http://github.com/google/jax
https://doi.org/10.1038/s41586-020-2649-2
https://github.com/facebookresearch/hydra
https://doi.org/10.1145/3460268.3460270

	Introduction
	Notions of quantum information
	Sector lengths
	Definition and basic properties
	Shadow inequalities
	Calculating sector lengths from purities
	Efficient sector length computation
	Sector length computation for symmetric states

	State Optimization
	Notes on differential geometry
	Optimization in pure state space
	Optimization in symmetric state space
	Riemannian Optimization Methods

	Implementation
	Automatic Differentiation and Compilation for Python
	Implementing state optimization

	Experiments
	Exploring sector lengths
	Exploring optimizations
	Kickstarting state optimization
	Comparison to shadow inequalities
	Additional experiments

	Future extensions
	Conclusions

