
Completeness for Fault Equivalence of Clifford ZX
Diagrams

Maximilian Rüsch
University of Oxford

Submitted in partial completion of the
Masters of Science in Advanced Computer Science

Trinity 2025

For truth.

Abstract

Recently, the novel notion of fault equivalence was introduced to reason about the
relationship of noise models on different diagrams. Two diagrams are considered fault-
equivalent if every undetectable fault on one diagram has a direct correspondence on
the other, both in terms of fault semantics and likelihood. Together with the ZX
calculus, a diagrammatic language that is used to reason about quantum computations,
fault-equivalent rewrites enable optimisation of a computation without changing its
behaviour under noise.

We solidify the framework of fault equivalence by adapting the ZX calculus and
providing an axiomatisation that is provably sound and complete for showing fault
equivalence on Clifford ZX diagrams. We present useful intermediate notions and tools
that extend the formal framework of fault equivalence and reasoning about noise on
ZX diagrams in general, and show how they find applications beyond fault equivalence.
Furthermore, we provide an implementation that is directly derived from the completeness
result as an automated method for showing fault equivalence between diagrams. Through
this work, we facilitate fully automatic verification of fault-tolerant implementations of
quantum computation specifications under a flexible and formally rigorous notion of noise.

Acknowledgements

I take this moment to thank both of my supervisors Benjamin Rodatz and Aleks Kissinger.
Your impact reaches from immensely useful discussions and feedback during all stages of
this work to enabling further opportunities for the development of myself, this project, and
beyond. I remain extraordinarily grateful to you for undertaking this journey with me.

Additionally, I want to thank Boldizsár Poór and Maximilian Schweikart for supporting
this work through insightful supplementary discussions that enabled great improvements
to the quality of this work. I want to thank S, erban Cercelescu for providing consider-
ations and insights and perhaps inadvertently providing a particularly fruitful idea
for proving Proposition 2.33.

I want to thank all those that claimed temporary residence on the fifth floor of
the Computer Science department for providing a warm and welcoming environment
that greatly facilitated the writing process.

Finally, I thank Becca for your ongoing support throughout all the time spent on this
work, for all special moments gifted to encourage me, and for the bravery required
to join me in my journey.

Contents

1 Introduction . 1
1.1 Related Work . 4

2 Preliminaries . 7
2.1 Stabiliser Formalism . 7
2.2 ZX Calculus . 9
2.3 Faults . 14
2.4 Noise Models . 16
2.5 Fault Equivalence . 23
2.6 Pauli Webs . 28

3 Completeness - Part I: Foundations and Setup 35
3.1 Fault Effects . 36
3.2 Restating Fault Boundedness with Effects 41
3.3 Axioms . 44
3.4 Soundness . 48
3.5 Outlook: Diagrammatic Extraction of Effect Weights 50

4 Fault Gadgets . 52
4.1 Universality of Unweighted Edge Flip Noise 55
4.2 Basic Properties . 58
4.3 Moving Fault Gadgets . 61
4.4 Implementing Axioms for Multi-Edge Noise 63

5 Fault Signatures . 66
5.1 Flip Operators . 66
5.2 Signatures . 68
5.3 Transforming Gadgets Into Signatures 69

6 Completeness - Part II: Normal Forms and Final Proof 75
6.1 Sinks . 75
6.2 Recovering The Diagram . 79
6.3 Enumerating Undetectable Faults 83
6.4 Full Normalisation and Completeness 86
6.5 Extending Completeness to w-Fault Boundedness 89

v

CONTENTS vi

7 Implementation . 93
7.1 Automating Fault Equivalence Checks 93
7.2 Additional Properties . 97

8 Future Work . 101
8.1 Extensions and Optimisations . 101
8.2 Beyond Adversarial Weighted Noise Models 102
8.3 Beyond the Qubit ZX Calculus . 103

9 Conclusion . 105

References 107

Appendices
A Missing Proofs for Fault Gadgets . 112

1. Introduction 1

1 Introduction

Scaling quantum computation involves, among many other components, optimising

quantum programs and suppressing noise. The former is a part of the field of quantum

compilation, while the latter is concerned with in the field of fault-tolerant quantum

computing (FTQC). Independently, both fields are making progress: Entire frameworks,

libraries and calculi are built to both systematically and heuristically simplify quantum

programs while preserving their semantics [KvdW20; vdWet20], while FTQC research

offers a versatile range of tools to reason about, detect, and correct faults resulting from

noise [Got09; Got97]. This work aims to extend the range of formal tools available

and improve the formalisation of existing notions.

An emerging framework for circuit synthesis and optimisation is the ZX calculus [CD11].

In the ZX calculus, quantum programs are thought of as diagrams obtained from a small

set of simple generators. These diagrams are then rewritten using a small number

of rules which provide alternative diagrams with the same semantics. The calculus

inherently comes equipped with a set of rewrites that is both sound and complete

for this semantic equivalence.

A key feature of the calculus is that ZX diagrams neither possess nor require a notion

of time: A single ZX diagram can have multiple interpretations depending on the direction

of time and positioning qubit world lines. This allows the ZX calculus to compress the

space of quantum programs considerably, mapping multiple equivalent circuits onto the

same ZX diagram which may then be considered as a simple undirected graph. Through

ZX rewrites, diagrams may pass through multiple intermediate stages with different

interpretations, where for some it might not be directly apparent how to implement them

physically. The problem of obtaining a circuit that fits a given interpretation of a ZX

diagram is known in the community as ‘circuit extraction’ [KvdW24], which was shown

to be computationally hard in the general case [BKW22].

The ZX calculus has also been applied to reason about noise and thus joined the

FTQC toolbox [Hua+23b; TFK23]. In particular, restricting generators to obtain the

well known Clifford fragment of the ZX calculus enables reasoning about faults in easily

classically simulable ZX diagrams [AG04]. Furthermore, when modeling faults through

1. Introduction 2

stabiliser theory, the Clifford fragment suffices to reason about faults in its own diagrams,

since it is proven to be complete for stabiliser quantum mechanics [Bac14].

Even though arbitrary rewrites for ZX diagrams can be obtained from a handful of

rules, some of these rules change a program’s behaviour under noise. When constructing

a fault-tolerant computation, inattentive application of rewrites might lead to a decrease

in fault tolerance. Interestingly, not all rewrites derived from ‘bad’ rules are affected:

Some rewrites may fully preserve fault tolerance, others preserve it up to a certain

degree still sufficient for the purposes of the user. These rewrites are classified as ‘fault-

equivalent’ [RPK24; RPK25]. Two diagrams are fault-equivalent if all undetectable faults

in one diagram have a correspondence in the other diagram, i.e. when rewriting one

diagram into the other no new and potentially detrimental faults are introduced. Fault

equivalence is compositional, so newly discovered fault-equivalent rewrites may open up a

wide range of previously unknown fault-tolerant implementations of quantum programs.

Checking whether a certain rewrite is fault-equivalent is either tedious or requires

additional knowledge about the rewrite or the context in which it occurs to perform

succinctly [RPK25]. For one, fault equivalence as introduced later on consists of finding

semantically equivalent faults for the diagram before and after the rewrite, constrained

by a discrete measure of likelihood, commonly known as the ‘weight’ of a fault [Got97].

Determining the semantics of a singular fault may involve calculating the full linear

map for general ZX diagrams, which quickly becomes intractable for both manual and

algorithmic processing. Moreover, the number of faults that need to be checked for a given

rewrite usually grows exponentially with the size of the diagram. In fact, deciding whether

a general ZX rewrite is fault-equivalent is NP-hard [RPK25]. Only for particularly small

rewrites, deductive proofs of fault equivalence stay meaningful without using additional

knowledge about the structure of the rewrite. Structural knowledge can shrink these

proofs, but since as this makes the proof dependent on the details of the rewrite, even

minimal variations of rewrites may require an entirely different proof (see the proofs

in [RPK25, Prop. 6.15, 6.16] for an example). Although naïve automated procedures for

this decision problem may be directly derived from its definition, they scale exponentially

in the number of internal edges of the diagram, rendering them unusable for larger

1. Introduction 3

diagrams. Thus, practically useful and scalable methods and connected definitions still

remain to be discovered and implemented.

This work provides a novel extension to the ZX calculus to facilitate modeling faults

drawn from some noise model directly inside diagrams. Through this extension, reasoning

about weighted faults in the Clifford fragment of the ZX calculus becomes easier and more

natural. In particular, the extension enables specifying a finite set of fault-equivalent

rewrites that are sound and complete for fault equivalence. That is, the calculus does

not allow deriving fault equivalences that do not actually hold, and it allows deriving

every relationship that does hold. Thus, proofs of fault equivalence between two diagrams

can be provided purely in this extended ZX calculus. As the proof of completeness is

constructive, an algorithmic procedure for checking fault equivalence can be directly

derived. The new algorithm opens venues to many subsequent optimisations by restricting

exponential scaling and making it independent of the number of edges internal to the

ZX diagram, offering a clear improvement versus the naïve procedure.

As part of the derivation, the noise model is encoded into the diagram, whereafter

they are incrementally brought into a novel normal form that separates the diagram’s

(fault-free) semantics and changes to these semantics that might occur due to faults from

the noise model. This form and its precursors are highly versatile: Besides allowing

to prove completeness, they may be used to recover e.g. the notion of a diagrams

distance [Got97; RPK25]. In particular, it enables us to decouple the analysis of such

properties entirely from the fact that the program under analysis is given by a ZX

diagram, even if the physical interpretation is not entirely clear. One property of high

interest is the logical error rate of a circuit, and the mainstream tools developed to

efficiently empirically obtain it have not yet been lifted to the ZX calculus [Gid21b;

Tuc20; Hua+23a]. Our decoupling largely prepares such a novel lifting. In particular,

once a description of a diagrams noise is obtained and brought into normal form, the

now diagram-independent result may be fed directly into the simulators. Although the

connection to the logical error rate is not formalised in this work, we provide additional

indications for completing the proposed lifting.

1. Introduction 4

Finally, an implementation of the extension to the ZX calculus is provided as a ready-

to-use Python package [Rüs25] for specific kinds of noise models. The aforementioned

algorithm is optimised in ways that are not straightforward in the native ZX calculus

to make it suitable for analysing larger ZX diagrams. In particular, the normal form is

significantly easier and faster to obtain when using more powerful computation methods

outside the ZX calculus.

This work starts out by introducing the necessary background to reasoning about ZX

diagrams as well as faults on ZX diagrams. The remainder is organised in two parts.

In the first part, ranging from Sections 3 to 6, the complete rule set is motivated

and provided, along with formulating the completeness result itself. We will construct

the intermediate notions, tools and algorithms required to prove this result, which

will be the final act of this part.

The second part, consisting of Sections 7 and 8, describes the implementation of the

Python package and highlights some optimisations made, mainly for obtaining the novel

normal forms and subsequent fault equivalence checks. Further, it describes examples of

additional properties of noise derivable from the normal form and outlines their potential

implementation. Finally, the completeness result may potentially be lifted to more

general notions of noise or even more general notions of diagrams than those we consider.

The challenges and considerations attached to such a lifting are outlined, including a

discussion of ZX calculi for systems with more than two levels (known as ‘qudits’) and

continuous measures of likelihood for faults.

1.1 Related Work

Our work builds on the existing notion of fault equivalence, first derived in [RPK24]

and further refined and formalised in [RPK25]. While this existing work is mainly

concerned with deriving a systematic end-to-end compilation procedure for fault-tolerant

implementations of circuits using fault-equivalent rewrites, we further facilitate the

procedure by fully characterising the sufficient and necessary conditions under which a

rewrite is fault-equivalent terms that are easier to verify. Additionally, we extend their

1. Introduction 5

notion of fault equivalence with a non-symmetric variant, and show that this variant

fulfills most of the properties that fault equivalence has.

During the development of our main result, i.e. finding a provably complete calculus

for fault equivalence, we encounter the problem of determining the effect of a fault on

certain locations including the outputs of the ZX diagram. For Clifford circuits, this can be

implemented with propagation of Pauli faults through the circuit, which is a fundamental

idea for the development of the stabiliser formalism and fault-tolerant computation in

general [Got97]. Traditionally, fault tolerance is achieved by limiting the spread of faults

throughout a circuit (which is determined via the aforementioned propagation) and

dealing with the remaining faults via simple error correcting codes. However, in particular

in [Got22], it was argued that achieving proper fault-tolerant computation requires a

shift in focus: From keeping fault propagation under control towards identifying where

a specific fault occurred. This knowledge is subsequently sufficient to correct the fault,

regardless of how it spread through the circuit.

The formalism attached to this new paradigm is provided in [DP23]. However,

we derive a new formalism of ‘signatures’ and ‘effects’ that implicitly generalises this

paradigm beyond circuits and facilitates reasoning about noise on diagrams without a

notion of time. To achieve this, we leverage and adapt the ZX calculus and implement

a diagrams noise model directly in the diagram itself, using a construction known as

fault gadgets, introduced in [RPK25]. Fault gadgets were initially introduced as a static

tracker of potential faults; however, we adapt their handling to make them dynamic

and able to move throughout a diagram.

Furthermore, we leverage the notion of Pauli webs [Bom+24], which were introduced

as a graphical notation on ZX diagrams to visualise stabilisers and detectors. Beyond this

purpose, we will use them to guide the movement of fault gadgets through a diagram,

in particular for interpolation between two fault gadgets. Using a technique presented

in [Bor19], we can obtain independent generators for these webs, which will prove useful

both for the theoretic results and the implementation of this work.

Finally, as part of our work on the implementation, we derive additional properties

of noise models from our newly introduced framework of signatures and effects. This

1. Introduction 6

includes the notion of the logical error rate, which is usually explored empirically using

highly efficient stabiliser circuit simulation techniques. While the foundations of such

simulations were introduced in [Got97; AG04], we recognise that one of the most widely

used simulation packages for this purpose is the stim package, presented in [Gid21b].

This package uses a two-step approach, first analysing a circuit to compile a fast sampler

from its noise model, and second providing highly optimised functionality to obtain

samples that scales well with available parallel compute resources. While we do not fully

integrate with the stim package, we argue that our approach poses an alternative to

the first step, generalising the sampling pipeline from being applicable to just quantum

circuits to being applicable to all Clifford ZX diagrams.

2. Preliminaries 7

2 Preliminaries

This section aims to provide a reasonable foundation for understanding the remainder

of this work. However, due to size constraints, we will assume the reader has gone

through a basic introduction into quantum computing and is familiar with the Dirac

notation, unitary operators, and the correspondence between linear maps and states.

A particularly in-depth discussion of such matter may be found in [NC10], a more

light-weight introduction in [Pre15].

Sections 2.1 and 2.2 essentially constitute revisions of existing literature to establish a

basic foundation. However, in Section 2.3, in particular in Sections 2.4 and 2.5, as well

as in Section 2.6, we either refresh existing formalisms or provide additional but novel

notions that extend these formalisms. These notions are essential for the remainder of

this work, and as such we encourage engaging with these sections in their entirety.

2.1 Stabiliser Formalism

Throughout the FTQC landscape, one of the most useful notions is those of stabiliser

circuits and stabiliser states, which are efficiently classically simulable (shown in [Got98,

Thm. 1] and later refined in [AG04]). These codes restrict the unitaries that circuits

implement to the well-known Clifford group, and are defined through sets of independent

operators. This section serves as a brief summary of stabiliser theory that suffices for

our purposes; for interested readers we refer to [KvdW24; Got97; Pre15].

At the core of stabiliser theory in the Clifford group are the Pauli operators:

X =
(

0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)

When viewing a pure state |ψ⟩ as a point on the well-known three-dimensional ‘Bloch

sphere’, these operators correspond directly to π-radian rotations around the X,Y, Z

axis respectively. The identity operator I is often included as the fourth Pauli operator,

corresponding to no rotation. We have that X2 = Y 2 = Z2 = I, but there are other

easy identities as well, like −XZ = ZX = iY .

These operators then compose into a group that generalises to many-qubit states:

2. Preliminaries 8

Definition 2.1. {X,Y, Z} generate the Pauli group P1 under composition. P1 contains

sixteen distinct operators:

P1 = {αP | α ∈ {1,−1, i,−i}, P ∈ {I,X, Y, Z}}

The n-fold tensor product of P1 is the n-qubit Pauli group Pn. We can collect all

phases through linearity, so Pn contains 4n+1 distinct operators. Two operators P,Q

from Pn always either commute or anticommute, so PQ = ±QP , and they commute

iff an even number of their 1-qubit components anticommute.

Ignoring the scalar, which corresponds to factoring Pn by its centre {±I,±iI}, we get

the group Pn of the order 4n. As we can identify Y with the product XZ up to a scalar,

we can express an operator P ∈ Pn as a vector in B2n [Bor19, Prop. 2.5.4], encoding

X and Z operators per component Pi. This enables speaking of linear independence,

vector spaces spanned by Pauli operators, and checking commutativity of two operators

purely in through computations in their vector form.

We move on to stabilisers:

Definition 2.2. Let |ψ⟩ be a pure state and U a unitary operator. We say that U

stabilises |ψ⟩, or that U is a stabiliser of |ψ⟩ when

U |ψ⟩ = |ψ⟩ ,

so |ψ⟩ must be a +1-eigenvector of U .

Definition 2.3. An abelian subgroup of P that does not contain −I is called a stabiliser

group S.

We identify a stabiliser group S with a set of independent generators, where inde-

pendence of an element is the fact that it cannot be expressed through composition

of other elements of the set. We note that these generators cannot be any i-phase

Pauli ±iP ∈ Pn, as then (±iP)2 = (±i)2I = −I. This group S then identifies an

entire quantum state space:

Definition 2.4. The stabiliser group S spans a stabiliser space, containing all vectors

that are stabilised by all S ∈ S.

2. Preliminaries 9

If S ⊂ Pn is generated by independent generators S1, . . . , Sm, its stabiliser space

has dimension 2n−m [Got98]. This means if we find n independent generators, the

group S generated by them fixes a space containing exactly one vector, referred to

as the stabiliser state of S.

The range of quantum mechanics considered in stabiliser theory is limited to only

using these stabiliser states. We thus have to limit the unitaries used to update those

states to a group that preserves stabiliser states. This group is usually referred to as

the ‘Clifford group’. Applying a unitary U to a stabiliser state spanned by generators

S1, . . . , Sn is the same as applying USiU
† for all i. So we can identify the n-qubit

Clifford group Cn as those unitaries with

Cn = {C | ∀P ∈ Pn : CPC† ∈ Pn} .

Applying the Choi-Jamiołkowski isomorphism [NC10], we find that we can identify

some n-qubit Clifford unitary exactly with a 2n-qubit stabiliser state. We will use this

correspondence so often that we will stop speaking of Clifford unitaries all together and

simply refer to these unitaries as stabiliser states.

2.2 ZX Calculus

The ZX calculus [CD11] is a graphical formalism that can represent any complex 2m × 2n

matrix for arbitrary m,n. In particular, the full ZX calculus can represent arbitrary

quantum operations [KvdW24, Thm. 3.1.4] and it includes all rules required to transform

them under semantic preservation. However, we exclusively focus on the Clifford fragment

of the ZX calculus, which is universal, sound and complete for stabiliser quantum

mechanics [Bac14]. In the remainder of this work, any mention of a ZX diagram implicitly

refers to a Clifford ZX diagram. For a comprehensive overview of the full calculus, we

refer to [vdWet20], and for a deep dive into the inner workings of the calculus, related

topics and other calculi, to [KvdW24].

2.2.1 ZX Diagrams

A ZX diagram consists of spiders that are equipped with:

• a type from {X,Z} (which is why the calculus is called the ‘ZX’ calculus),

2. Preliminaries 10

• a phase α = k π
2 (mod 2π),

• a number of input and output legs.

These spiders represent linear maps from (C2)⊗m to (C2)⊗n:

Definition 2.5 (Z spider, X spider).

Z-spider: k π
2 nm := |0⟩⊗n⟨0|⊗m + eik π

2 |1⟩⊗n⟨1|⊗m

X-spider: k π
2 nm := |+⟩⊗n⟨+|⊗m + eik π

2 |−⟩⊗n⟨−|⊗m

Convention allows us to omit the phase parameter of a spider when it is 0. We also

include identities, swaps, cups, and caps in ZX diagrams:

:=
∑

i

|i⟩⟨i| :=
∑
ij

|ij⟩⟨ji| :=
∑

i

|ii⟩ :=
∑

i

⟨ii|

We can compose spiders to larger networks and express arbitrary linear maps:

Definition 2.6 (Composition of ZX diagrams). The sequential composition of two

diagrams D1 : (C2)⊗m → (C2)⊗k and D2 : (C2)⊗k → (C2)⊗n is the diagram D2 ◦ D1,

which corresponds graphically to:

D2 ◦D1 ⇝ D2k ... n...D1m ... : (C2)⊗m → (C2)⊗n

The parallel composition of two diagrams D1 : (C2)⊗m → (C2)⊗n and D2 : (C2)⊗k →

(C2)⊗l is the diagram D1 ⊗D2, which corresponds graphically to:

D1 ⊗D2 ⇝

D2k ... l...

D1m ... n...

: (C2)⊗(m+k → (C2)⊗n+l)

We will say that two ZX diagrams D1, D2 are semantically equivalent, written D1 = D2,

if they evaluate to the same linear map up to a global scalar.

To provide some examples for ZX diagrams, let us revisit the Pauli rotations X,Y, Z

from Section 2.1. We can represent the rotations X,Z via spiders, as they directly

2. Preliminaries 11

correspond to rotations about that axis of π radians, and Y as their composition. This

is easily checked by computing their linear map:

π = |+⟩⟨+| − |−⟩⟨−| = |1⟩⟨0| + |0⟩⟨1| =
(

0 1
1 0

)

π = |0⟩⟨0| − |1⟩⟨1| =
(

1 0
0 −1

)

i π π = i

(
0 1
1 0

)(
1 0
0 −1

)
=

(
0 −i
i 0

)

Remark 2.7. In this work, we will generally consider ZX diagrams up to a global non-zero

phase, so we may omit the scalar i in the definition of the Y rotation above. This matches

how we treated stabilisers in Section 2.1 and how we will treat faults in Section 2.3.

However, we will encounter two scenarios where the global phase does matter:

• Stabilisers and related constructions (like Pauli webs in Section 2.6) are phase

sensitive, i.e. their application requires scalar accuracy. If we disregarded scalars

here, the calculus would become unsound for stabiliser theory. In particular, we use

this scalar accuracy to our advantage in Proposition 2.29.

• One can show equality between any two linear maps by showing that they act the

same on every element of an orthonormal basis [NC10]. This can also be applied in

the ZX calculus. However, the rewrites used to show this equality must be scalar

accurate, since one could otherwise introduce relative instead of global phases and

become unsound. We will apply this technique in Proposition 6.3.

Note that there may be additional cases where scalar accuracy is required, such as

computing probabilities of measurement outcomes [vdWet20], which are not of interest in

this work.

We identify special kinds of Zx diagrams, namely those corresponding to states (with

no inputs, i.e. column vectors / |·⟩), those corresponding to measurements (with no

outputs, i.e. row vectors / ⟨·|), and those corresponding to scalars (neither inputs nor

outputs). Similar to how we consider Clifford unitaries as stabiliser states through

2. Preliminaries 12

the Choi-Jamiołkowski isomorphism, we can bend around input legs of a diagram into

output legs, yielding its corresponding state:

D1m ... n...
D1

m

... n...

⇝

... ...

|D1⟩

m

n...

⇝

...

For example, the Z-Pauli map corresponds to the well known (unnormalised) Bell state

|Φ⟩−:

|0⟩⟨0| − |1⟩⟨1| = π ⇝ π = |00⟩ − |11⟩

We further introduce a special notation for the Hadamard gate H, one of the

basic Clifford unitaries:

= 1√
2

(
1 1
1 −1

)

This gate may also be expressed diagrammatically in multiple ways using its Euler

decomposition into three rotational angles:

= π
2

π
2

π
2 = - π

2 - π
2- π

2 (2.1)

To verify that the two latter diagrams are equal, we could calculate their linear map

and check them for equality. However, this is in many cases more cumbersome than

required. We can prove every equality that is derivable by using linear algebra in the

ZX calculus itself, using a set of rules which we turn to now.

2.2.2 Rewrite Rules

Along with diagrams, the ZX calculus also features a set of axioms called ‘rewrite rules’,

that enable showing equivalences between diagrams. There are different axiomatisations

(for example, the axiomatisation in [Bac14] was later refined in [BPW17]), so we use

rather a ZX calculus than the ZX calculus. We settle on a standard set of axioms for

ZX diagrams with Clifford phases that is known to be complete for showing semantic

equivalence in that fragment [Bac14; BPW17].

Perhaps the most important rule, that we most often assume implicitly, is ‘Only

Connectivity Matters’, commonly abbreviated ‘OCM’. This rule states that as long as we

2. Preliminaries 13

keep the connectivity of the spiders internally and the order of inputs and outputs the same,

we may move spiders and bend legs arbitrarily without changing the underlying linear map:

π

− π
2

π
2

π

π
2

π− π
2

π
2π

π
2=

(OCM)

π

− π
2

π
2 π

π
2

=
(OCM)

We are thus allowed to view a ZX diagram D as an undirected graph (G, type, α), where

type and α assign vertices in G a type in {X,Z,B} and an angle respectively. The

special type B identifies vertices that are either an input or an output of the diagram.

Since we apply the Choi-Jamiołkowski isomorphism and bend all maps into states, we

do not distinguish between inputs and outputs and simply refer to them as boundary

vertices, and to the edges connected to them as boundary edges. All edges that are

not boundary edges will be called internal edges.

Beyond OCM we present the additional eight rewrite rules that make up the ax-

iomatisation that we use1:

k π
2

l π
2

=
(Fusion)

(k + l) π
2

...
............

k π
2π -k π

2

π

π

=
(Pi-Copy)

=
(Copy)

= π
2

π
2

π
2

(Euler)

=
(Elim)

=
(Zero)

π 0

=
(Bialgebra)

k π
2... ... k π

2... ...=
(Colour)

... ...

All of these rules also hold in the colour inverse, but not all of them are scalar accurate as

presented, since we disregard global phases in diagrams most of the time (as outlined in

Remark 2.7). The axioms represent the most basic rewrites that transform one diagram

into another semantically equivalent diagram. We note that these rewrites are inherently

bidirectional, i.e. the transformation they apply has no particular direction in which it

does not hold. As the calculus we use is sound and complete, we can write the equivalence

D1 = D2 if and only if there is a proof of this equivalence using the axioms above.
1We use the ‘original’ variant of the (Euler) rule referenced in [Bac14] that, with some of the other rules,

can be shown to be equally powerful as all other variants in common use [BPW17]. Furthermore, we use
0 as syntactic sugar to denote the diagram representing the all-zero linear map.

2. Preliminaries 14

One of the most useful examples is the Hopf rule [KvdW24], which says that pairs

of legs between red and green spiders can be removed:

= =
(OCM) (Elim)

=
(Fusion)

=
(Bialgebra)

=
(Copy)

=
(Copy)

=

(2.2)

In the last step we used the fact that we view diagrams up to a global phase and

may thus remove the scalar diagram. Derived rewrite rules, just like axioms, hold in

every diagrammatic context, so we can utilise the Hopf rule to derive more complex

rules. For example, through application of (Fusion), we can generalise the Hopf rule

to spiders with arbitrary phases:

α β α β= α β= α β=
(Fusion) (Fusion)(Eq. 2.2)

A significant part of this work consists of motivating, introducing, and applying new

rewrites. However, we will put restrictions on most of these rewrites: The diagrams that

they transform must, at least to some degree, exhibit the same behaviour under noise. We

will now move toward formalising noise and fully specifying these additional restrictions.

2.3 Faults

Following a common framework used for stabiliser codes [Got97; DP23; Bac+17; Got22],

we only consider faults describable by Pauli operators. As we consider diagrams up to a

global phase, we may also take faults up to a global phase and draw them from Pn. The

notion of noise models used in this work is widely based on previous work from [RPK25],

and includes some generalisations for weighted models. Since ZX diagrams generalise

quantum circuits, the definitions made here may be reused for circuits.

We remark that while taking faults from Pn like we do is common, it may not be

sophisticated enough to model all faults that occur physically. To start, we make the

assumption that there is a base set of independent Pauli operators that occur physically,

and everything else is just a combination of these operators. This assumption is commonly

made when analysing faults and correction codes [Got97, Sec. 2.4], so we allow ourselves

the simplifications in modeling and reasoning that it enables. Furthermore, considering

these Pauli operators without their linear combination removes the possibility to analyse

2. Preliminaries 15

non-Pauli noise channels, e.g. the amplitude damping channel2. Again, this is a restriction

that is common in the field [Gid21a; Got97]. We close the remark by recognising that

while handling amplitude decay precisely is difficult, approximations of corrections for

this channel can still lead to discovery of good quantum error correction codes [Leu+97].

When modeling faults, one needs to clarify where faults may occur. In a circuit,

these fault locations are commonly taken as the qubit lines at each timestep, resulting

in Pauli faults considered in spacetime. For a ZX diagram, the lack of a canonical

placement of world lines prevents this. However, the idea generalises to considering all

edges of the diagram as possible fault locations:

Definition 2.8 (Faults). Let D be a ZX diagram with edges E. A fault F on D is an

element in P |E|, which associates a Pauli rotation with each edge in E. Applying F to D

yields a new diagram DF where all Pauli operators in F are applied on the edges from D

associated with them.

We say that a fault acts trivially on an edge e if the operator in F associated with

e is I, and it acts non-trivially on e otherwise.

For faults, we define two different forms of equivalence. One requires that the Pauli

decomposition of the faults must be the same, while the other requires that the resulting

diagrams are semantically the same:

Definition 2.9 (Congruence, Semantic equivalence). Let D be a ZX diagram with edges

E. Two elements F1, F2 ∈ P |E| are congruent, written F1 ≡ F2, if

F1 =
⊗

i

P1,i F2 =
⊗

i

P2,i and P1,i = P2,i for all i

Further, F1, F2 are semantically equivalent, written F1 = F2, if DF1
1 = DF2

2 .

Based on these equivalences, we define:

Definition 2.10 (Trivial and detectable faults). Let D be a ZX diagram with edges E.

We denote the trivial fault by I ≡ I |E|. An arbitrary fault F is trivial if DF = DI = D

and detectable if DF = 0.
2Analysing this channel is also further hindered by requiring a sense of ‘time’ that ZX diagrams may

lack. In some cases we can get around this which we discuss briefly in Section 2.4.2.

2. Preliminaries 16

The difference between the trivial fault I and some other trivial fault F becomes

clearer when viewing an example:

π π

On the LHS, the fault instantiated on the diagram consists entirely of identity rotations,

i.e. ILHS ≡ I ⊗ I, while the RHS features two Z-axis rotations, i.e. Z ⊗ Z. However, the

RHS can be shown to be equal to the LHS via the rules of the ZX calculus:

π π = π π =
(Pi-Copy)

(Fusion)

(Elim)

For this work, it will be imperative to distinguish faults that have the same semantic

effect on the diagram but that are not the same fault. In Section 3.1 and Section 5 we

introduce additional notions of equivalence to further refine this.

In the example above we have made the assumption that the underlying diagram is

susceptible to a Z⊗Z fault. This assumption might not always hold, e.g. diagrams might

be susceptible to different faults depending on how they are physically implemented (if

you can implement them directly at all). In other cases, multiple implementations might

admit the same faults, but feature different distributions over them [Got97].

We must thus allow more freedom in our specifications and model not only which

faults might occur on a system, but also which likelihood of occurrence it has. For this

specification we introduce the notion of a ‘noise model’.

2.4 Noise Models

Let us view a slightly more intricate variation of the last example, where we model

that only the two faults Z ⊗ I and I ⊗ Z happen individually. We realise that they

can form Z ⊗ Z if both happen together:

π πand ⇝ ππ

The diagram is subject to a fault that is congruent to Z ⊗ Z without us modeling

that this fault occurs on its own. This is similar to how two independently occurring

bit flips in a classical computer may cancel out, potentiate their effect, or simply

coexist without interaction.

2. Preliminaries 17

In such scenarios we would like to distinguish faults that actually happen physically

and faults that may just exist as consequences of multiple other faults occurring together.

We call the former atomic faults, while the latter non-atomic faults are also referred to

as composite faults, since they may be expressed as a product of atomic faults. Once

we fix a set of atomic faults, all composite faults that may arise are fully characterised

via all such products. This is the basis of what we call a noise model: A collection

of atomic faults. We note that this collection may contain Pauli operators that affect

more than one edge, and they do not necessarily have to contain operators for all edges,

i.e. not all possible fault locations have to be used.

This notion is further enhanced by allowing a noise model to quantify which atomic

faults are more likely to occur, which we do for two reasons. First, as outlined above,

the assumption that all faults are distributed equally to occur is poor in reality [Got97,

Sec. 2.4], so we allow modeling some distinctions. Second, this quantification will

become useful in reasoning about the degree to which some noise model is equal to

another, in case they are not fully equal.

In the following, we characterise noise models from two different perspectives that

make these requirements precise and formal:

1. Referred to as the introduction of weights to a noise model, this perspective allows

providing an ‘unlikelihood’ to atomic faults3. The weight of a composite fault is

directly derived from the weights of the atomic faults of which it is a composite.

2. Referred to as restrictions to a noise model, this perspective allows limiting the

contents of the set of atomic faults. This provides helpful terminology to refer to

different ‘kinds’ of noise models.

The combination of both perspectives then provides us with a framework to reason

about fault equivalence and related notions.
3We will take higher weight to correspond to a lower likelihood. This facilitates unification with existing

notions of weight, as we will see in Remark 4.7.

2. Preliminaries 18

2.4.1 Weights

For this perspective, we require a noise model to assign atomic faults a finite integer

non-zero weight: The higher the weight of the fault, the less likely it is modeled to be. The

weight of a composite fault F is then the minimal sum of weights from atomic faults that

compose to F , meaning that our initial assignment of weights to atomic faults induces a

weight assignment for composite faults. We identify two edge cases for a composite fault F :

1. F is not achievable with the given atomic faults, i.e. there is no combination of

atomic faults that yields F , in which case it is assigned composite weight ∞ .

2. F is composed of no atomic faults, i.e. F ≡ I, in which case it is assigned composite

weight 0 .

We thus treat the trivial fault I which models that exactly nothing is happening, as a

fault composed of exactly nothing, so it would be inconsistent for our noise models

to include I as an atomic fault.

Further, let us clarify why the weights we assign to an atomic fault F should

be finite and non-zero:

• The weight ∞ would model that F never occurs, but we can also simply exclude F

from the atomic fault set.

• The weight 0 would model that F always occurs4. Since we exclude I from the

atomic fault set, F must be non-trivial. But a non-trivial fault that always occurs is

not really a fault, but instead a fixed part of the diagram and should be implemented

as such.

We now formalise:

Definition 2.11 (Weighted noise model). Given a ZX diagram D with edges E, a weighted

noise model F is a pair (A, awt) containing

• a set A ⊆ P |E| − {I} of atomic faults, and
4Alternatively, one could take the weight 0 to model that a fault F has no ‘cost’, i.e. it could but does

not have to be added to every other fault without changing its weight. However, since we use weight
to model (un-)likelihood, we use the smallest weight (set as 0) to model the largest likelihood (occurs
always).

2. Preliminaries 19

• an atomic weight function awt : A → N ̸=0.

The set of all faults that can occur is the group ⟨A⟩ ⊆ P |E|, also denoted as ⟨F⟩. An

element F ∈ A may be alternatively written as F ∈ F .

Composite faults are created from atomic faults, although there may be more than

one combination that leads to the same composite. Thus, we formalise the sets of atomic

faults which provide us with a particular composite fault:

Definition 2.12 (Composing sets). Let F be a noise model for some ZX diagram with

edges E, and F ∈ P |E|. A set F̃ ⊆ F is composing for F if

∏
Fi∈F̃

Fi ≡ F .

Let us now provide weights for all faults that are generated by our noise model:

Definition 2.13. An atomic weight function awt(·) from a noise model F induces a

weight function wt : P |E| → N∞ where

wt(F) = min
F̃ is composing for F

∑
Fi∈F̃

awt(Fi)

providing for a fault F the minimum weight with which F is pieced together from atomic

faults.

We find that using this definition, we are consistent with the edge cases identified earlier:

• Edge case 1: A (non-trivial) fault F that is impossible to achieve with the given

atomic faults has no composing sets. The computation of wt(·) thus takes an

empty minimum, which we take to default to the upper bound in N∞, i.e. we get

wt(F) = ∞.

• Edge case 2: The trivial fault can be constructed from no faults, i.e. ∅ is a composing

set for I. We take an empty sum to default to 0, so the computation of wt(·) takes

a minimum containing 0, i.e. we get wt(I) = 0.

2. Preliminaries 20

The concept of weights is not particularly new in the FTQC toolbox. For example,

a multi-qubit Pauli operator is established to have a certain weight w, if it contains

exactly w non-trivial Pauli components. Building on this, [RPK25, Def. 2.3] defines

the weight of a fault F to be the number of ‘things’ that need to go wrong, i.e. the

number of atomic faults required to generate F . When taking the atomic faults in

the noise model to be all Pauli operators with exactly one non-trivial component, as

in [RPK25, Def. 5.2], these two definitions coincide.

We now see that we can implement such ‘noise models’ from [RPK25, Def. 2.3]

in our framework. Such noise models consist of just a set of atomic faults, so every

atomic fault F is implicitly assigned an atomic weight awt(F) = 1. The induced weight

of composite faults then already aligns with [RPK25, Def. 2.3]: Take F1, . . . , Fn to be

the minimal number of atomic faults such that ∏Fi ≡ F , then since awt(Fi) = 1 for

all Fi, we directly have wt(F) = n. Since the weight differences of atomic faults are

what distinguishes our weighted noise models from [RPK25, Def. 2.3], we refer to noise

models with awt(·) = 1 as unweighted noise models.

While our definition of assigning atomic faults weights independent of their Pauli decom-

position may seem like a strict generalisation, we will see in Theorem 4.6 and Remark 4.7

that this is not the case: Everything that we model as an atomic fault with a specific

weight can be modeled through the above notions of weight, albeit taking some extra steps.

Weighted noise models as defined here have a key property that we call ‘adversariality’.

To determine the weight of a composite fault in Definition 2.13, we take the minimum of

all possible weight sums that may produce this fault. We thus associate the ‘likelihood’ of

a fault to be equal to that of the most likely composition of atomic faults. This enables

worst-case reasoning, also referred to as adversarial reasoning.

We conclude by generalising from such weighted noise models with adversariality,

distinguishing two possible approaches:

1. A noise model may assign precise probabilities to atomic faults, providing a continuous

rather than a discrete likelihood specification.

2. A noise model may not obey adversariality.

2. Preliminaries 21

Most results of this work can be lifted to such more general definitions of Pauli noise models.

This is especially true for results that do not require purely diagrammatic reasoning, e.g.

when using tools described in Section 7. We will provide a start to these generalisations

and highlighting difficulties as well as nuances otherwise ignorable through adversariality

in Section 8. A full proof of completeness in Section 6 is only provided for adversarial

weighted noise models while a full, precise, and formal generalisation is left for future work.

2.4.2 Restrictions

So far, we were mainly concerned with the weight and thus likelihood of atomic faults.

However, we can also restrict the set of atomic faults, yielding different kinds of noise

models. Furthermore, although a model F is already specific to a ZX diagram, there

are multiple ways to generate ‘canonical’ noise models given a diagram. Perhaps the

easiest is the type of models that considers each edge of the diagram to be independent

and thus potentially able to generate a fault on its own:

Definition 2.14 (Edge flip noise model). Let D be a ZX diagram with edges E. A noise

model F is an edge flip noise model for D if all F ∈ F have exactly one non-trivial Pauli

operator.

Edge flip noise models have a distinct advantage: Atomic faults can be described

by a single operator-edge-weight combination. There are three possible Pauli operators,

so we can fully capture the noise model in the diagram by annotating each edge with

a 3-tuple of weights associated with the (X,Y, Z) operators.

Notation 2.15. We will annotate an edge with a tuple (wX , wY , wZ) to reference that

the edge flip noise model in use for this diagram provides edge flips as atomic faults for

this edge, with the weights wX , wY , wZ respectively. The tuple may contain a special

marker ‘−’ to mean that the particular edge flip is not part of the noise model. Further,

we abbreviate (−,−, wZ) simply with wZ , which we will use extensively in Section 4 and

beyond when we unify all atomic faults to single-edge Z-flips.

Edges without annotation may represent free variables in the noise model, neither

specifying which edge flips are part of the noise model nor which weights they have.

2. Preliminaries 22

During derivations, we will parametrise the annotation to denote arbitrary but fixed

weight values.

We illustrate this idea reusing the same diagram with different annotated noise models:

(1, 2, 1)

(2, 4, 1)(3, 1, 1)

(−, 2, 1)

2(3, −, 1)
full edge flip noise sparse edge flip noise

The LHS fully annotates each edge with a weight, while the RHS omits some edge flips from

its noise model. Note that the rightmost edge only features a Z-edge flip with a weight of 2.

There may also be different restrictions than edge flip models. An example is the

circuit level noise model as presented in [RPK25, Def. 2.4], which requires identifying parts

of the ZX diagram as quantum circuit components. This is not always possible, as some

ZX diagrams lack a clear interpretation as a circuit, e.g. when there is no clear flow of time.

However, it may still make sense to use this model: If the ZX diagram was just created

from a circuit without additional rewrites we still know the component structure. We can

then reason about properties of this noise model and compare it to some edge flip noise

model, or how these properties change when we start to rewrite the diagram. Note that the

circuit level noise model may feature atomic faults containing more than one non-trivial

Pauli operator (e.g. for faulty multi-qubit measurements); such a noise model cannot

be faithfully represented by an edge flip noise model without additional tools. Finally,

using weighted circuit level noise we could create a model approximating ‘depolarising

noise’ [CB18, Sec. 1.2] [Got97], which is a standard definition in existing literature.

In some cases, noise models may specify that some edges of a diagram do not generate

any noise. This is particularly simple to express for edge flip models: We simply remove

the atomic faults acting on that edge from the atomic fault set, leaving the noise generated

on the other edges intact. These noise models are not physically realistic, but they still

pose a great mathematical and visual reasoning tool, so we formalise them:

Definition 2.16 (Idealised edge). Let D be a ZX diagram and F a noise model for D.

An edge e of D is an idealised edge if there is no F ∈ F that acts non-trivially on e.

We will visually mark edges as idealised by using the colour purple:

2. Preliminaries 23

Example 2.17. Noise models for the diagram

may contain some of



I
⊗
I
⊗
X

,

I
⊗
I
⊗
Z

,

Z
⊗
I
⊗
I

,

Y
⊗
I
⊗
Z

,

Z
⊗
I
⊗
X

,


but not of



I
⊗
Z
⊗
I

,

I
⊗
X
⊗
I

,

Z
⊗
X
⊗
Z

,

Y
⊗
Y
⊗
I

,


Note that if F is such that all edges of D are idealised, the only fault possible is

the trivial fault I. We call such a diagram fully idealised.

2.5 Fault Equivalence

We might encounter two noise models on the same diagram, or even two noise models

on different diagrams, that are to some degree equivalent. To illustrate, consider the

following three diagrams with annotated edge flip noise:

(1, −, 1) (−, −, 1)

(1, −, −)

(−, −, 1)

(1, −, −)

All three diagrams are semantically equivalent by simple application of (Elim). Additionally,

the potential faults produced by these diagrams with their noise models are the same

when considering how they might be pushed to the boundary via (Pi-Copy), e.g. all three

noise models may produce a Y edge flip:

ππ ππ

π π π π

=

=

=π π π π

ππ=

=

=

ππ

ππ

(Pi-Copy) (Elim)

(Pi-Copy)

(Pi-Copy)

(Elim)

(Elim)

Just from viewing the annotations such relationships may not be directly visible. The

formulation of such equivalences becomes even more involved when considering noise

models that leverage weights, i.e. have awt(F) ̸= 1 for some atomic F . We thus reserve

this section to make these formulations precise under the notion of ‘fault equivalence’.

Fault equivalence was first defined in [RPK24] as ‘distance-preservation’ and later

refined in [RPK25], where both definitions are specifically considering unweighted edge flip

noise. We lift this concept to arbitrarily weighted noise models as defined in Definition 2.11.

To do this, we consider a non-symmetric version of the equivalence:

2. Preliminaries 24

Definition 2.18 (Fault boundedness, w-fault boundedness). Let D1, D2 be ZX diagrams

with respective noise models F1,F2. The diagram D1 under F1 is w-fault-bounded by D2

under F2, written D1 ≤̂
w
D2, if and only if for all faults F1 ∈ ⟨F1⟩ where wt(F1) < w, we

have either:

1. F1 is detectable, or

2. there exists a fault F2 ∈ ⟨F2⟩ such that:

wt(F2) ≤ wt(F1) and DF1
1 = DF2

2

A diagram D1 is fault-bounded by D2, written D1 ≤̂ D2, if D1 ≤̂
∞
D2. If the diagrams

D1, D2 are the same, we also write F1 ≤̂
w

F2 and F1 ≤̂ F2.

With this definition, we can express that if we e.g. replace D2 with D1 in a ZX rewrite,

the bad / undetectable noise exhibited by the quantum program does not get worse.

Recall that a lower weight represents a higher likelihood of the fault occurring. Then we

can read the definition as: The likelihood of every undetectable fault in D1 is bounded by

the likelihood of its equivalent in D2, at least for the most common faults, i.e. those with

weight below w. Increasing w then naturally increases the strength of such guarantees.

The range of ZX diagrams that can be in such a relationship is already constrained:

Fault boundedness implies semantic equivalence between the diagrams. Thus, fault

boundedness (and later fault equivalence) is a stronger relationship than semantic

equivalence. In fact, we can already infer this from 1-fault boundedness:

Proposition 2.19. Let D1, D2 be two non-zero ZX diagrams with respective noise models

F1,F2 such that D1 ≤̂
1
D2. Then D1 = D2 holds.

Proof. Through 1-fault boundedness, we can consider the trivial fault ID1 as it has

wt(ID1) = 0 < 1. It is undetectable, since DID1
1 = D1 ̸= 0 by assumption. The only fault

F2 that has wt(F2) ≤ 0 on D2 is F2 ≡ ID2 . So then fault boundedness mandates

D1 = D
ID1
1 = D

ID2
2 = D2 .

2. Preliminaries 25

In the special case that F1 does not contain any atomic faults, D1 is fault-bounded

by any semantically equivalent D2. Although this result is rather simple, we will use it

often to justify fault boundedness of rewrites. Thus, we state:

Proposition 2.20. Let D1 be a ZX diagram with a noise model F1 such that all edges

of D1 are idealised. Then for any semantically equivalent diagram D2 under any noise

model F2, D1 ≤̂ D2 holds.

Proof. On D1, the only fault possible under F1 is the trivial fault ID1 , for which we find

the trivial fault ID2 . Since D1, D2 are semantically equivalent, DID1
1 = D1 = D2 = D

ID2
2

holds. Additionally, wt(ID1) = 0 = wt(ID2) by definition of wt(·).

To define fault equivalence, we can now simply require symmetric fault boundedness:

Definition 2.21 (Fault equivalence, w-fault equivalence). Let D1, D2 be ZX diagrams

with respective noise models F1,F2. The diagram D1 under F1 is w-fault-equivalent to

D2 under F2, written D1 =̂
w
D2, if and only if D1 ≤̂

w
D2 and D2 ≤̂

w
D1. We call D1 and

D2 fault-equivalent if D1 ≤̂ D2 and D2 ≤̂ D1. If the diagrams D1, D2 are the same, we

also write F1 =̂
w

F2 and F1 =̂ F2.

Similar to regular ZX rewrites, which consist of an asserted equivalence D1 = D2,

fault equivalence gives rise to asserted equivalences of the form D1 =̂ D2 w.r.t. some

noise models F1,F2, or similar for other relationships like fault boundedness. This

naturally enables thinking about these equivalences as fault-equivalent rewrites, similar

to their definition in [RPK25].

Note that, unlike in [RPK25], our definition does not fix the noise models F1,F2, so

the asserted equivalence has to clarify the noise models in use, if they are not inferrable

from context. We will usually do this by annotating the diagrams with the noise

model directly, and as we will discover in Section 4.1 this is sufficient to deal with

all noise models in this work.

The perhaps simplest example of a fault-equivalent rewrite rule that of a fully idealised

edge and an edge annotated such that no fault is happening on it (in the context of an

edge flip noise model), which may be seen as defining alternative notation:

2. Preliminaries 26

(−,−,−)
=̂

On either side there may not be any faults, so the two are clearly fault-equivalent. For

additional examples of fault-equivalent rewrites we refer to the entirety of Sections 3

to 6 or [RPK25; RPK24].

Finally, we may now have non-trivial rewrites that keep the underlying diagram

the same and only change the noise model. This technique will prove useful, especially

when the noise model is visually encoded into the diagram, making the change easier

to understand. In fact, we will use such rewrites when defining our proposed set of

fault equivalence axioms in Section 3.3.

For a practically useful calculus consisting of fault-equivalent rewrites we need to

ensure that these rewrites are compositional (to use them in larger contexts) and transitive

(to enable forming logical reasoning chains), just like rewrites built on diagrammatic

equivalence are. Indeed, we can show that these properties hold for the most general w-

fault boundedness and thus by extension for derived properties like (∞-)fault boundedness

and (w-/∞-)fault equivalence. Compositionality and transitivity have already been proven

for w-fault equivalence in [RPK25, Prop. 3.11, Prop. 3.12]. We adapt their proof for

w-fault boundedness and more general weighted noise models:

Proposition 2.22. Fault boundedness is compositional, i.e. for ZX diagramsD1, D
′
1, D2, D

′
2

with respective noise models F1,F ′
1,F2,F ′

2 it holds that

D1 ≤̂
w1
D2 and D′

1 ≤̂
w2
D′

2 =⇒ D′
1 ◦D1 ≤̂

min(w1,w2)
D′

2 ◦D2 ,

D1 ≤̂
w1
D2 and D′

1 ≤̂
w2
D′

2 =⇒ D1 ⊗D2 ≤̂
min(w1,w2)

D′
1 ⊗D′

2 ,

where the composed diagrams have noise models uniquely composed of F1,F ′
1,F2,F ′

2

under atomic fault set union (while padding faults with I for edges in the other diagrams)

and addition of atomic weights.

Proof. We prove the claim for sequential composition, the proof for parallel composition

is analogous. Now let F◦
1 ,F◦

2 be the noise models obtained for D′
1 ◦ D1 and D′

2 ◦ D2

respectively. These noise models are unique, because the original noise models they are

2. Preliminaries 27

respectively sourced from are operating on disjoint sets of edges, and thus in disjoint

spaces of P |·|.

We start with considering an undetectable fault F ◦
1 ∈ F◦

1 of weight less than

min(w1, w2). F ◦
1 is composed of F1, F

′
1 drawn from F1,F ′

1 respectively, and since F◦
1 was

formed under addition of atomic weights, it must be that

wt(F ◦
1) = wt(F1) + wt(F ′

1) < min(w1, w2) .

Then via the precondition of w1, w2-fault boundedness, we can find semantically equivalent

F2, F
′
2 drawn from F2,F ′

2 that have lower weight than F1, F
′
1. Their composite F ◦

2 = F2F
′
2

is then a fault on D′
2 ◦D2 that can be drawn from F◦

2 and it holds that

(D′
2 ◦D2)F ◦

2 = D′
2

F ′
2 ◦DF2

2 = D′
1

F ′
1 ◦DF1

1 = (D′
1 ◦D1)F ◦

1 ,

wt(F ◦
2) = wt(F2) + wt(F ′

2) ≤ wt(F1) + wt(F ′
1) = wt(F ◦

1) .

Thus, there is an equivalent F ◦
2 for F ◦

1 with lower or equal weight.

Furthermore, we have for transitivity that:

Proposition 2.23. w-fault boundedness is transitive, i.e. for ZX diagrams D1, D2, D3

with respective noise models F1,F2,F3 it holds that

D1 ≤̂
w1
D2 and D2 ≤̂

w2
D3 =⇒ D1 ≤̂

min(w1,w2)
D3 .

Proof. We start with an undetectable fault F1 ∈ F1 with wt(F) < min(w1, w2). Then via

the precondition D1 ≤̂
w1
D2, there is some F2 ∈ F2 with DF1

1 = DF2
2 and wt(F2) ≤ wt(F1).

Via the precondition D2 ≤̂
w2
D3, we can similarly obtain some F3 ∈ F3 with DF2

2 = DF3
3

and wt(F3) ≤ wt(F2).

But then we owe to the transitivity of diagram equivalence that DF1
1 = DF2

2 = DF3
3

and wt(F3) ≤ wt(F2) ≤ wt(F1), which completes the claim.

The results for the remaining three relations derived from w-fault boundedness follow

directly from setting w1 = w2 = ∞, or via symmetry, or both:

Corollary 2.24. Fault boundedness, w-fault equivalence, and fault equivalence are

compositional and transitive.

2. Preliminaries 28

We will be assuming compositionality and transitivity of fault equivalence throughout

this work without explicit mention.

2.6 Pauli Webs

The rewrite rules we have been using thus far are introduced up to a global scalar, along

with faults that we handle up to a global scalar as well. We now take another look at

Pauli products in stabiliser groups, which as introduced in Section 2.1 still retain a scalar

of either 1 or −1. Recall that such a Pauli stabilises a state if and only if the state is a

+1 eigenvector of the Pauli; as such, keeping track of the scalar of a Pauli is vital.

It turns out that visualising stabilisers in ZX diagrams is a powerful method to

understand how a diagram can be stabilised, and this will subsequently enable us to

speak more precisely about faults in Section 3.1. To find a diagrammatic description of

these scalar accurate stabilisers, we require introduction of the scalar-accurate copy

rule [BPW17; Bor19]:

k π
2π -k π

2

π

π

=
exact

(Pi-Copy)

... ...ik (2.3)

We use the symbol =
exact

to denote an exact and scalar-accurate diagram equality.

Stabilisers for all Clifford spiders can be derived using just this rule, which by definition

describes how to introduce π-phases around these spiders without changing the semantics

of the diagram. Such an introduction of π-phases is also known as firing the spider [Bor19].

All spiders are stabilised by pairs of π-phases in their own colour, since we can

always introduce / eliminate a pair of π-phases with (Elim) and (Fusion). Opposite-colour

stabilisers however become more involved:

k π
2 ...

π

=
exact

π

π

π

ik (−i)kk π
2 ...

kπ

k π
2 ...

π

=
exact

π

π

π

k π
2 ...

kπ

Note that there is now a colour specific difference in the introduced scalar, which arises from

keeping the order of π-phases on the boundary consistent. This difference is only visible for

phases of {−π
2 ,

π
2 } where k is odd, and vanishes for the remaining phases when k is even.

The need for such consistency is twofold:

2. Preliminaries 29

• As in Section 2.1, we can describe these stabilisers using the language of Pauli

products. In particular, if we keep the order of decomposition of Y consistent, we

can easily translate between the Pauli products and the phases that these stabilisers

introduce in ZX diagrams. In our case we use Y = iXZ, so the phase of the Pauli

that describes the stabiliser can be obtained through division by i. We will only

work with Pauli products instead of an explicit decomposition, so we only consider

phases of +1,−1 as i is already removed.

• Multiple stabilisers of single spiders compose to expose an overall stabiliser (with a

phase of −1) of a diagram:

π
2- π

2=
exact

π

π

π

π ππ

π

π

π
2- π

2

π

π

π

π

π
2- π

2

i i

−1=
exact

Keeping the edges consistent allows the π-phases to cancel out without introducing

new scalars through Eq. (2.3). Thus, we can obtain the overall scalar of the stabiliser

simply by multiplying all scalars of the local stabilisers of spiders.

To visualise local stabilisers, Pauli webs [Bom+24] were developed as a graphical

overlay notation for ZX diagrams. Each Pauli web defines a highlighting of spider legs in

green and/or red, visualising how π-phases may be introduced around a spider, i.e. how a

spider may be fired. We introduce the signed version of Pauli webs, which are stored as

Pauli operators and, in addition to the highlighting, track the sign of the overall global

phase that is introduced when firing every spider according to the highlighting.

Definition 2.25 (Signed Pauli Web). Let D be a ZX diagram with edges E. An element

P ∈ P |E| provides a highlighting of edges in D where an edge e is highlighted in red if Pe

anticommutes with Z and green if Pe anticommutes with X. Such an operator P is a

Pauli web if:

• a spider with phase in {0, π} satisfies:

– P highlighting an even number of its legs in its own colour, and

– P highlighting all or none of its legs in the opposite colour

2. Preliminaries 30

π π
2

Figure 1: Examples of Pauli webs. The second Pauli web has a sign of −1.

• a spider with phase in {−π
2 ,

π
2 } satisfies:

– P highlighting an even number of its legs in its own colour and none in the

opposite colour, or

– P highlighting an odd number of its legs in its own colour and all in the

opposite colour

The sign of a Pauli web P is the sign of the global phase that gets introduced when firing

the spiders according to the highlighting.

We provide some illustrative examples of single spider webs in Fig. 1. Similar to how

local stabilisers compose to larger networks of spiders with a consistency requirement,

Pauli webs need to be compatible on a per-edge basis too. That is, highlightings coming

from either vertex of an edge must match. For the earlier example we thus get the

following web with a sign of −1:

π
2- π

2

We further provide the two possible webs (up to combinations) for the Hadamard gate,

which expectedly inverts the colour between its boundaries:

= π
2

π
2

π
2 = π

2
π
2

π
2

A natural question is how Pauli webs may be obtained for a given diagram and what

properties they have. As Pauli webs are defined through elements of P |E|, we would

expect them to form a group under Pauli operator multiplication. This is indeed the case,

and through [Bor19, Alg. 3] we find that for a Clifford diagram with n boundary edges,

we can find n+ d independent generators for the group W of Pauli webs, for some d ≥ 0:

W := ⟨S1, . . . , Sn, R1, . . . , Rd⟩ (2.4)

2. Preliminaries 31

Remark 2.26. Viewed end to end, the algorithm from [Bor19, Alg. 3] only specifies the

stabilisers for a given diagram. However, an intermediate result of the algorithm is a set of

n+ d ‘firing assignments’, which can be uniquely translated to Pauli webs. To be precise,

these firing assignments are constructed for an intermediate diagram, known as a graph

like diagram, which can be deterministically obtained for any Clifford ZX diagram D

through introduction of spiders using the rule (Elim). Pauli webs obtained for such graph

like diagrams can be easily reversed to Pauli webs for D as (Elim) preserves all stabilisers.

We recall that an n-qubit stabiliser state is uniquely determined by n independent

stabiliser generators of the space that only contains that state. For a Clifford diagram

with n boundary edges, there analogously are n independent Pauli products from P |B|

that stabilise the diagram. We thus expect to find n independent Pauli webs that

highlight some boundary edge.

We then formalise:

Definition 2.27 (Stabilising Pauli web). Let D be a diagram with boundary edges B. A

Pauli web P for D is stabilising if it highlights at least one boundary edge.

Indeed, the independent generators S1, . . . , Sn from Eq. (2.4) are stabilising webs,

corresponding to a unique independent stabiliser generator each [Bor19, Alg. 3] with

the same sign, which is why we use a similar notation.

It remains to be clarified what the generators R1, . . . , Rd from Eq. (2.4) correspond to.

They cannot correspond to a new independent stabiliser as we already have n generators

for the stabilisers of the diagram. Furthermore, we can take them to not correspond to any

stabiliser, i.e. they do not highlight any boundaries: If a generator Ri would correspond

to a stabiliser S, we must be able to generate a web w corresponding to S with the

generators S1, . . . , Sn, and wRi yields a generator that does not highlight any boundaries.

Instead, such webs are known as checks [Bom+24] or detecting regions [RPK25; MBG23]:

Definition 2.28 (Detecting Region). Let D be a diagram with boundary edges B. A

detecting region is a Pauli web P such that P does not highlight any boundary edges. The

group of all detecting regions in a diagram is R = ⟨R1, . . . , Rd⟩, i.e. a subgroup of W.

2. Preliminaries 32

We must conclude that the correspondence between stabilising webs and stabiliser

generators is not one-to-one, since we can always multiply a stabilising web with a detecting

region to receive another stabilising web that by construction highlights the same boundary

edges. One may find a ‘canonical’ stabilising web by only using the web generators

S1, . . . , Sn from Eq. (2.4); however, we will only use stabilising webs to map to stabilisers,

not vice versa, thus we are not concerned with finding such a canonical web in this work.

Detecting regions possess a key property: Firing spiders according to them does

not change the diagram save for introduction of the sign that the region carries. Since

webs must be compatible on a per-leg basis, once we fire each spider locally, there

are two π-phase spiders of the same type on the same edge, which cancel out. This

culminates in the following:

Proposition 2.29. Let D be a ZX diagram with a detecting region P such that P has

sign −1. Then D = 0.

Proof. Firing the detecting region P produces a new diagram that is D, up to a phase of

−1. But then D = −D, which can only be satisfied by D = 0.

Corollary 2.30. If D is a non-zero diagram, every detecting region of D has positive

sign.

We are now ready to see why they are called ‘detecting’ regions: They allow us to

detect faults! Since faults (be it single-edge or multi-edge) introduce new π-phase spiders

into a diagram, they may affect its Pauli webs. However, the webs highlighting itself

remains invariant, and faults may only influence the sign of webs [Bom+24].

Formally, the sign of a web P is flipped by a fault F ∈ P |E| exactly when odd many

π-phase spiders are introduced by F on edges highlighted by P in an anticommuting

colour (since the web locally forms a −1 stabiliser for each π spider), i.e. when F

anticommutes with P :

Definition 2.31. A fault F ∈ P |E| is said to be detected by a detecting region P if F

flips the sign of P , i.e. when FP = −PF .

2. Preliminaries 33

Of course, if F is detected by some detecting region, it must be detectable by at

least one generator for the detecting region group ⟨R⟩.

To recall Definition 2.10, a fault F is called detectable if DF = 0. It would be

great if these two definitions of detectability coincide. Indeed, they do, but we have

to show a useful intermediate result first:

Proposition 2.32. Given a stabiliser group S ⊆ PN of n ≤ N independent generators

S1, . . . , Sn, for each Si, we can find an operator T ∈ PN that anticommutes only with Si.

Proof. By [Bor19, Lem. 2.5.10] we may choose an m < n and find an operator T that

commutes with S1, . . . , Sm and anticommutes with Sm+1, . . . , Sn. But we may always

choose m = n − 1 and rearrange the generators to successively find these T for every

Si.

We then finally show:

Proposition 2.33. Let D be a non-zero ZX diagram. A fault F is detectable if and only

if there is a detecting region P in D that detects F .

Proof. ‘if’ / ⇐: Assume a detecting region P that detects F . Since D is non-zero and

due to Corollary 2.30, P must have positive sign in D. As F flips the sign of P , P

has negative sign in DF . Then by Proposition 2.29, DF = 0 holds.

‘only if’ / ⇒: Assume for the contrapositive that there is no detecting region that

detects F . Then F can at most flip some of the independent stabilising Pauli

web generators S1, . . . , Sn from Eq. (2.4), which by definition have support on the

boundary. Let SF be the set of those sign-flipped independent stabilising Pauli

webs. Further, for a stabilising web s ∈ SF , let sB be the corresponding stabiliser

generator on the boundary. We define

SB := {sB | s ∈ SF }

to be the set of stabilisers corresponding to the stabilising webs that were flipped.

2. Preliminaries 34

As all webs in SF are independent and are the only stabilising webs in Eq. (2.4),

the stabilisers in SB must be independent too. Then through Proposition 2.32, we

can find an operator Ti for each si ∈ SB, such that Ti anticommutes only with si.

Then, we can compose a new fault F ′ = ∏
si∈SB

Ti, which by construction flips

exactly those webs that F flips as well. So DF and DF ′ must be stabilised by the

same stabilisers, and thus the stabiliser spaces of DF and DF ′ are the same, i.e. we

have DF = DF ′ . But F ′ exists purely on the boundary of the diagram, and since

composing a diagram with single edge flips on its boundary never sends it to zero

and D ̸= 0 by assumption, we have DF ′ ̸= 0 and thus DF ̸= 0.

3. Completeness - Part I: Foundations and Setup 35

3 Completeness - Part I: Foundations and Setup

The ZX calculus has a comparatively long history of completeness results. That considers

completeness for semantic equivalence, i.e. for any two ZX diagrams that are semantically

equivalent this relationship can be proven with the rules of the ZX calculus.

The first iteration of the calculus brought forward in [CD11] did not contain the Euler

decomposition rule from Eq. (2.1). This version was shown to be incomplete even for

the Clifford fragment in [DP09]. Adding the Euler decomposition rule yields the version

of the Clifford ZX calculus that we use, which (as the name suggests) is complete for

semantic equivalence between Clifford ZX diagrams [Bac14], but incomplete outside this

fragment [SZ14]. Completeness for all ZX diagrams requires at least a single additional

rule [Vil19], even though larger complete axiomatisations exist [NW17].

Obtaining these completeness results even beyond semantic equivalence of diagrams

serves as an important motivation of the ZX community, since proving your calculus

can prove every relationship you are potentially interested in makes it distinctly more

powerful. Thus, it is of major interest to prove whether there is a set of fault-equivalent

rewrites that can prove every relationship of fault equivalence for two diagrams, i.e. a set

that is complete for fault equivalence. The present Sections 3 to 6 of this work emerge

precisely in response to this interest. The completeness result itself requires a considerable

number of intermediate results and its proof is split across these sections.

As a broad overview, the proof commences as follows: We introduce a new notion of

equivalence for faults, and derive a special function that assigns each new equivalence class

a weight, such that the function is provably unique for a diagram D and its noise model

F . Next, we restate fault boundedness (and thus fault equivalence) as an element-wise

comparison of this function. We proceed to show that we can rewrite D along with F ,

first into a form that encodes F into D fault-equivalently, and afterwards extract the

aforementioned weight function for D using a small set of fault equivalence axioms that

operate on edge flip noise only. This involves separating the now fault-free diagram D

and the diagrammatic representation of the weight function, removing all potential noise

from edges internal to D. Finally, the fault-free D and the representation of the weight

function both have a normal form, yielding an overall normal form and thus completeness.

3. Completeness - Part I: Foundations and Setup 36

This first section addresses three key points:

• Providing an introduction to the new notion of equivalence for faults and restating

fault boundedness with it.

• Motivating, deriving and stating the collection of axioms that we require for

completeness.

• Proving that the axioms are sound, i.e. the diagrams they describe and transform

obey fault equivalence.

Afterwards in Sections 4 and 5 we will derive the intermediate results required for the

final proof, which concludes in Section 6.

3.1 Fault Effects

We recall that a noise model as defined in Definition 2.11 specifies a set of atomic faults A

(without the trivial fault) and a function awt : A → N ̸=0 that provides atomic weights for

the atomic faults. This function in turn induces a weight function wt : P |E| → N∞ that

provides weights for possible faults in the diagram. The induced weight for a fault F is then

given as the minium sum of atomic weights for atomic faults that compose to exactly F .

For faults that cannot occur we use the weight ∞, for the trivial fault we use the weight 0.

When studying fault equivalence of diagrams using this weight function we may

encounter some redundancies: Many of the atomic faults could be semantically equivalent

to each other even if they are not the same Pauli operator (i.e. they are not congruent),

with even more composite faults being equivalent as a result. Further, we may try to

optimise and eliminate these redundancies by removing one of two atomic faults F1, F2 if

DF1 = DF2 . However, this can result in inconsistencies and ultimately becoming unsound:

Example 3.1. Consider the following diagram D with a noise model that allows only

the faults F1, F2 on D:

π

F1

π

F2

3. Completeness - Part I: Foundations and Setup 37

Both faults are detectable F1, F2 by the marked detecting region, so DF1 = 0 = DF2 , and

we would expect that we can eliminate one of the faults as they may seem redundant.

However, this would change the set of undetectable faults induced by the noise model.

In particular, the composite fault F1F2 flips the detecting region twice, returning it to

positive sign and making the fault undetectable. We can show through ZX rewrites that

the composite fault is semantically equivalent to one that is non-trivial and outside the

detecting region:

π

π

F1F2
π

=
π

=(Pi-Copy)
(Fusion)

π

π

π =(Pi-Copy)

π

π π

π

(Elim)

Removing one of F1, F2 would remove this undetectable fault, and since the noise model

does not allow other atomic faults we cannot recover it. We would thus have changed our

noise model unexpectedly!

So we want to consider a finer grained equivalence for identifying redundancies in

atomic faults. We take one key observation away from Example 3.1: The atomic faults

flip different Pauli webs. In addition to the shown detecting region the stabilising webs

of the diagram are generated by four independent stabilising webs. We can visualise

how the faults interact with them:

S1: Flipped only by F1 S2: Flipped by no fault S3: Flipped only by F2

π

F1

π

F2

π

F1

π

F1

π

F1

S4: Flipped by no fault

π

F2
π

F2
π

F2

As composition of faults naturally leads to considering all web flips together, some of

these flips may cancel out again. In the above case we had one web flip remaining, which

is exactly the web that is also flipped by the undetectable composite fault.

As it turns out, considering which Pauli webs a fault F flips is exactly the right

notion for our purposes. In contrast to DF , which is the ‘semantic interpretation’ of

F , we capture this as a faults effect:

Definition 3.2 (Fault effect). Let D be a ZX diagram with a Pauli web group ⟨W ⟩, and

let F be a fault from the corresponding noise model F . The effect of F is given as a set

eff(F) := {w | w ∈ W : wF = −Fw} ,

3. Completeness - Part I: Foundations and Setup 38

which describes the web generators that anticommute with F . The set of all effects from

F is given by

Eff(F) = {eff(F) | F ∈ ⟨F⟩} .

Remark 3.3. While the possibility of capturing fault effects through sign flips of Pauli

webs was noted in passing in [Bom+24, Sec. 3] and implicitly used for descriptions of

detectable faults in [Bom+24; RPK24; RPK25], these usages do not provide a full formal

treatment. Since Pauli webs w.r.t. to faults are essential in almost all upcoming parts of

this work, we aim to provide this missing formal framework for fault effects.

As we saw in Example 3.1, two or more faults may combine to yield other faults.

Whether the composite fault flips a web w purely depends on whether an odd number of

the original faults flipped w. Thus, the effect of the composite fault is a reduction

of the effects of original faults:

Proposition 3.4. Let D be a ZX diagram with a noise model F . Further, let F1, F2 ∈ F

and let F3 ≡ F1F2. Then the effect of the composite fault F3 is

eff(F3) = (eff(F1) ∪ eff(F2)) \ (eff(F1) ∩ eff(F2)) =: eff(F1) ⊕ eff(F2) .

Proof. Directly, since webs that are flipped by either F1 or F2 (but not both) directly

carry over to F3, and webs that are flipped by both F1 and F2 cancel out.

Corollary 3.5. F1, F2 ∈ F have eff(F1) = eff(F2) if and only if eff(F1F2) = ∅.

From Proposition 2.33 we know that a fault is detectable in particular if it flips the

sign of a detecting region. Reversing the implication, we can derive that undetectable

faults cannot flip any detecting regions:

Definition 3.6 (Undetectable effects). Consider a ZX diagram with the detecting region

group ⟨R⟩. For any undetectable fault F it holds that

eff(F) ∩R = ∅ ,

making eff(F) an undetectable effect. The set of all undetectable effects in the noise model

F is

Eff ̸=0(F) = {W | W ∈ Eff(F) : W ∩R = ∅} .

3. Completeness - Part I: Foundations and Setup 39

Undetectable effects by definition contain only stabilising webs, so they can be described

purely by the stabilisers these stabilising webs correspond to.

For a diagram with boundary edges B, we will express the restriction of a Pauli web w

to the boundary as w|B. As we will need to compare the signs of these stabilisers across mul-

tiple potentially different (but semantically equivalent) diagrams, we lift this to effect sets:

Definition 3.7. (Boundary restriction for effects) Consider a ZX diagram with boundary

edges B and a noise model F . Then for any effect eff(F) ∈ Eff(F), the boundary restriction

is

eff(F)|B := {w|B | w ∈ eff(F)} .

Finally, we can derive that for undetectable effects, evaluating fault effects is exactly

as useful as evaluating fault semantics, which holds across diagrams:

Proposition 3.8. Let D1 = D2 be non-zero ZX diagrams with respective effect functions

eff1, eff2. For any two undetectable faults F1, F2 from D1, D2 respectively, it holds that

eff1(F1)|B = eff2(F2)|B ⇔ DF1
1 = DF2

2 .

Proof. ‘if’ / ⇐: Assume w.l.o.g. for a contrapositive that there is a stabiliser s ∈

eff(F1)|B such that s /∈ eff(F2)|B. F1 flips the sign of s, so s is no longer stabilising

DF1
1 , but instead −s is.

However, by assumption, D1 = D2, so both diagrams must be stabilised by the

same set of stabilisers. Since F2 did not flip s, s is still stabilising DF2
2 . If now −s

was also stabilising DF2
2 , we could produce a stabiliser −ss = −I, which similar

to Proposition 2.29 implies DF2
2 = 0. This contradicts F2 being undetectable, so

−s is not stabilising DF2
2 and the stabiliser spaces of DF1

1 and DF2
2 are different, so

DF1
1 ̸= DF2

2 .

‘only if’ / ⇒: Via a similar argument to ⇐, if both faults flip the same webs, the

stabiliser spaces of DF1
1 , DF2

2 remain the same, so the claim directly follows.

3. Completeness - Part I: Foundations and Setup 40

We acknowledge that because we assume that D1 = D2, D1 and D2 must have the

same number of boundary edges even though they might be different diagrams. Thus, we

simplify and make no distinction between the two technically different but isomorphic

sets of boundary edges, and simply denote the restriction to the boundary by ·|B.

Now suppose that on a diagram D, there are two detectable faults F1, F2 that flip the

same webs, then by definition, they haveDF1 = 0 = DF2 . Together with Proposition 3.8 for

undetectable faults in the same diagram (where boundary effect equivalence corresponds

to effect equivalence), we can directly conclude:

Corollary 3.9. Let D be a diagram with a noise model F . For any two faults F1, F2 ∈ ⟨F⟩

with eff(F1) = eff(F2) it holds that DF1 = DF2 .

As two congruent faults would trivially flip the same webs, we thus can place fault

effects between the scrutinous congruence and the broad semantic equivalence, i.e. for

all faults F1, F2 in a noise model we have

F1 ≡ F2 =⇒ eff(F1) = eff(F2) =⇒ F1 = F2 .

Proposition 3.8 has another interesting side effect: When considering faults purely

on boundary edges, the trivial faults, i.e. those with eff(F) = ∅, are exactly the

stabilisers of the diagram:

Proposition 3.10. Let D be a non-zero ZX diagram with boundary edges B and effect

function eff. For any fault F ∈ P |B| on the boundary, it holds that eff(F) = ∅ if and only

if either F or −F stabilise D.

Proof. ‘if’ / ⇐: Since we treat diagrams up to a global non-zero scalar, we have

D±S = D = DI by assumption for a stabiliser S. But then by Proposition 3.8, we

have that eff(S) = eff(I) = ∅.

‘only if’ / ⇒: Via the contrapositive, if for some fault F on the boundary neither F

nor −F stabilises D, we have D±F ̸= D = DI . But then via Proposition 3.8, it

holds that eff(F) ̸= eff(I) and thus eff(F) ̸= ∅.

3. Completeness - Part I: Foundations and Setup 41

So far, we have covered a new notion of equivalence, finer grained than semantic

equivalence, that allows us to capture when atomic faults are redundant. Further, as we

eliminate all detectable effects from the noise model, this notion approaches semantic

equivalence. We will continue by using this idea of approach to discover hidden structures

in the notions of fault boundedness, and through it fault equivalence, allowing us to

restate both in terms that are ultimately easier to check diagrammatically.

3.2 Restating Fault Boundedness with Effects

Checking fault boundedness as defined in Definition 2.18 is performed by considering each

fault F1 generated by the first noise model F1 individually: If F1 is undetectable, we have

to find a semantically equivalent fault F2 in the second noise model F2 with equal or

lower weight than F1. This F2 is similar to a ‘witness’ that F1 has some equivalent that is

at least as likely as F1. However, we can take a shortcut here: For two undetectable faults

that are semantically equivalent, we only have to obtain such a witnessing F2 for the fault

with lower weight. For the remaining fault with higher weight, the same F2 can be reused.

We could thus collapse all semantically equivalent undetectable composite faults into a

single equivalence class and only find a witness for the minimum weight in this class.

As outlined, this simplification is sound, so finding a witness for the minimum weight

fault in all classes is sufficient for fault boundedness. We reason adversarially, so this

case is also necessary as fault boundedness requires at least finding such a witness for

the minimum weight fault. This section is reserved to formalise the simplification and

the relationship of sufficiency / necessity to fault boundedness.

As we found in Proposition 3.8, we can use fault effects to study semantic equivalence

between undetectable faults, while considering effects instead of semantics provides

us with more flexibility and expressiveness for detectable faults. Thus, we define our

equivalence classes by effect equivalence and identify them directly with the exact effect

of the faults within. We observe that mapping a fault to its equivalence class is already

performed by the fault effect function eff(·).

3. Completeness - Part I: Foundations and Setup 42

We now introduce weights for effects, considering them as the aforementioned identifiers

for entire equivalence classes. As outlined above, the weight of an effect W is the

minimum weight of all faults with effect W :

Definition 3.11. Let D be a ZX diagram with effects Eff(F). The effect weight function

ewt : Eff(F) → N is given by

ewt(W) = min
F ∈⟨F⟩

eff(F)=W

wt(F) .

We thus decouple finding all faults that we can consider equivalent without becoming

unsound (as we would have with semantic equivalence) from finding the minimum weight

for a fault. This decoupling allows restating fault boundedness between two diagrams as

an element-wise comparison of their ewt functions. It is exactly this comparison that can

be done diagrammatically by enumerating all relevant elements of these functions in both

diagrams, making the decoupling a key component in the journey to completeness.

We observe:

Proposition 3.12. Let D1 = D2 be two ZX diagrams with respective noise models F1,F2,

undetectable effects Eff(1)
̸=0,Eff(2)

̸=0 and corresponding effect weight functions ewt1, ewt2.

Then D1 under F1 is w-fault-bounded by D2 under F2 if and only if for all W1 ∈

Eff(1)
̸=0(F1) with ewt1(W) < w there is some W2 ∈ Eff(2)

̸=0(F2) such that

W1|B = W2|B and ewt2(W2) ≤ ewt1(W1) .

Proof. ‘if’ / ⇐: Assume that there is a correspondence for effects as outlined above.

Consider an undetectable fault F1 in D1 with at most weight w − 1.

As F1 is undetectable, eff1(F1) ∈ Eff(1)
̸=0(F1) by definition, and then by assump-

tion there is a corresponding effect W2 ∈ Eff(2)
̸=0(F2) with eff1(F1)|B = W2|B

and ewt2(W2) ≤ ewt1(eff1(F1)). So there must exist some F2 in D2 such that

eff1(F1)|B = eff2(F2)|B, which by Proposition 3.8 implies DF1
1 = DF2

2 .

Further by the above, W2 also satisfies ewt2(W2) ≤ ewt1(eff1(F1)). Then there

must be at least one fault F ′
2 that is semantically equivalent to F2, whose weight

saturates the value ewt2(W2) = ewt2(eff2(F2)). So DF1
1 = DF2

2 = D
F ′

2
2 , and F ′

2 has

3. Completeness - Part I: Foundations and Setup 43

equal or lower weight than F1. As this was shown for an arbitrary F1 with up to

weight w − 1, D1 ≤̂
w
D2 must hold.

‘only if’ / ⇒: Assume that D1 ≤̂
w
D2 holds. Then take some W1 ∈ Eff(1)

̸=0(F1) with

ewt1(W1) < w, which is saturated by some fault F1 in D1 with eff(F1) = W1.

By assumption of D1 ≤̂
w
D2, there exists some F2 in D2 with DF1

1 = DF2
2 and

wt(F2) < wt(F1). By Proposition 3.8, the former implies eff(F2)|B = eff(F1)|B, and

more generally eff(F2) ∈ Eff(2)
̸=0(F2). But as F1 saturates the weight ewt1(W) and

by Definition 3.11, wt(F2) < wt(F1) implies ewt2(W) < ewt1(W), which completes

the claim.

Proposition 3.12 exactly captures that when determining if D1 ≤̂
w
D2 holds, we can

simply disregard all detectable faults in D1. Instead, we are able to focus on undetectable

faults, and further only have to handle the minimum weight that a fault might produce

in a given semantic equivalence class.

Recall that fault equivalence is the special case of symmetric ∞-fault boundedness.

Then, we obtain a succinct description of fault equivalence directly from Proposition 3.12:

Corollary 3.13. Let D1 = D2 be two non-zero ZX diagrams with respective noise

models F1,F2, undetectable effects Eff(1)
̸=0,Eff(2)

̸=0 and corresponding effect weight functions

ewt1, ewt2.

Then D1 under F1 is fault-equivalent to D2 under F2 if and only if:

• There is a bijection f that maps an undetectable effect W1 ∈ Eff(1)
̸=0(F1) to an

undetectable effect f(W1) = W2 ∈ Eff(2)
̸=0(F2) such that W1|B = W2|B, and vice

versa, and

• ewt1(W) = ewt2(f(W)) for all W ∈ Eff(1)
̸=0(F1).

A similar claim for atomic faults has been used extensively in [RPK25] to show

fault equivalence for simple transformations. Thus, we successfully generalised this

correspondence to more involved transformations between noise models.

3. Completeness - Part I: Foundations and Setup 44

It will become useful to handle the special case where D1, D2 are identical, so only

the noise model changes. In that case, a correspondence between boundary restrictions

of effects is equivalent to a correspondence between undetectable effects themselves

and we can simplify:

Corollary 3.14. Let D be a non-zero ZX diagram with two noise models F1,F2 and

corresponding effect weight functions ewt1, ewt2.

Then F1 =̂ F2 holds if and only if:

• Eff ̸=0(F1) = Eff ̸=0(F2), and

• ewt1(W) = ewt2(W) for all W ∈ Eff ̸=0(F1).

3.3 Axioms

We start developing the axioms by proving some algebraic results majorly facilitated

by Corollary 3.13. In particular, these results show us how to do the following fault-

equivalently:

• Remove / Introduce redundant faults, under the notion of redundancy introduced

in Section 3.1.

• Remove / Introduce composite faults.

• Translate between all faults detectable by some region generator R and all of their

pairwise composites, which are undetectable by R.

We will show these in quick successive order:

Proposition 3.15 (Merging redundant atomic faults). Let D be a ZX diagram with a

noise model F and let eff be its corresponding effect function. Then for all F1, F2 ∈ F , if

eff(F1) = eff(F2) and awt(F1) ≤ awt(F2), we can fault-equivalently remove F2 from F .

Proof. Let F ′ be the noise model obtained by removing F2 from F . Further, let ewt, ewt′

be the effect weight functions of the respective noise models F ,F ′. Since F1 and F2 have the

same effect, we can directly deduce Eff(F) = Eff(F ′), so inherently Eff ̸=0(F) = Eff ̸=0(F ′)

as well.

3. Completeness - Part I: Foundations and Setup 45

Now assume for a contradiction that there exists an effect W with ewt(W) ̸= ewt′(W),

and let FW be the composite fault such that eff(FW) = W . Since we only removed an

atomic fault, it must be that F2 was in a composing set F̃ for FW . F1 and F2 have the

same effect by assumption, so there must be another composing set F̃ ′ for FW such that

F̃ ′ = {F1} ∪ (F̃ − {F2}) ,

i.e. the two composing sets only differ by only F1 or F2. The fault F1 is still present in

F ′, and since it has at most the same weight as F2 the composing set F̃ ′ must have an

equal or lower weight sum than F̃ . Thus, we must still have ewt(W) = ewt′(W), yielding

a contradiction.

So Eff ̸=0(F) = Eff ̸=0(F ′) and ewt = ewt′ hold which implies fault equivalence by

Corollary 3.13.

Proposition 3.16 (Combining atomic faults). Let D be a ZX diagram with a noise

model F and effects Eff(F). Then for all F1, F2 ∈ F , we can fault-equivalently introduce

their product F1F2 as an atomic fault, assigning it the weight

awt(F1F2) = awt(F1) + awt(F2) .

Proof. Let F ′ be the noise model obtained by adding F1F2 to F . Further, let ewt and

ewt′ be obtained from F ,F ′ respectively.

Since F1F2 was already contained in ⟨F⟩, we already had eff(F1F2) ∈ Eff(F). Thus,

we have that Eff(F) = Eff(F ′).

Under F , {F1, F2} is a composing set of F1F2, which has a weight sum of exactly

awt(F1) + awt(F2). Adding another composing set {F1F2} with the exact weight sum

does not change the induced weight of any faults that are composites of F1F2. Then we

directly have ewt = ewt′ and thus fault equivalence by Corollary 3.13.

Proposition 3.17 (Removing detectable atomic faults). Let D be a ZX diagram with a

noise model F and detecting region group ⟨R⟩. For a detecting region generator r ∈ R,

let F̄r be the set of atomic faults detectable by r.

3. Completeness - Part I: Foundations and Setup 46

Further, let there be some F ∈ F̄r such that

∀F ′ ∈ F̄r \ {F} : FF ′ ∈ F ′ and awt′(FF ′) = awt(F) + awt(F ′)

holds. Then we can fault-equivalently obtain a new noise model F ′ by removing F from F .

Proof. Assume for a contradiction that Eff ̸=0(F) ̸= Eff ̸=0(F ′), so there is some W ∈

Eff ̸=0(F) with W /∈ Eff ̸=0(F ′) since we only removed an atomic fault. There must be

some composite fault Fcomp in ⟨F⟩ such that eff(Fcomp) = W .

We only removed F , so F must be in a composing set for Fcomp. Furthermore, since

W is an undetectable effect, Fcomp must be undetectable, i.e. it is not allowed to flip

r. That requires that, to yield Fcomp, F was at least composed with some F ′ that also

flips r. Then {F, F ′} is part of some composing set for Fcomp, and so is the product FF ′

which is included in the atomic faults for F ′ by assumption. But then Fcomp is also in

⟨F ′⟩, and thus eff(Fcomp) = W ∈ Eff ̸=0(F ′) which completes the contradiction.

Beyond Eff ̸=0(F) = Eff ̸=0(F ′), the proof of Fcomp having equal effect weight in both

noise models is identical to the proof in Proposition 3.16. Thus, since Fcomp was arbitrary,

we can directly conclude that both noise models agree on the weights of all undetectable

effects, so the rewrite is fault-equivalent by Corollary 3.13.

Note that this result directly implies that if |F̄r| = 1, we can simply remove the single

fault in the set from the noise model. We will see a diagrammatic example of this in

Section 6.3. Additionally, we highlight that the fault equivalence in Propositions 3.15

to 3.17 implies symmetry: Every time we add / remove faults, we could just as

easily do the inverse.

We are now ready to state the fault equivalence axioms that we will show form a

ZX calculus that is complete for fault equivalence of Clifford ZX diagrams. The axioms

are presented in Fig. 2. We divide them into three groups, will be particularly useful

at different stages of the completeness proof:

1. The regular Clifford ZX axioms on fully idealised diagrams.

2. Axioms that enable intuitive handling of faults and diagrams that have an annotated

noise model, which we will generalise to multi-edge scenarios in Section 4.

3. Completeness - Part I: Foundations and Setup 47

w⃗ =̂
(Scalarfe)

w⃗
=̂

(Elimfe)
w⃗

=̂
(Detectfe)

...
w1 wn

b1 bn

w2w1 =̂
(Mergefe)

min(w1, w2)
=̂

(Combfe)
w2w1

w1 + w2

w2w1

k π
2 =̂

(XPhasefe)w w

=̂
(Commutefe)w1 w2

π
2

w1 w2

k π
2

l π
2

=
(Fusion)

(k + l) π
2

...
............

k π
2π -k π

2

π

π

=
(Pi-Copy)

=
(Copy)

= π
2

π
2

π
2

(Euler)

=
(Elim)

=
(Zero)

π 0

=
(Bialgebra)

k π
2... ... k π

2... ...=
(Colour)

... ...
Clifford ZX axioms in fully idealised diagrams

Identity removal, noops, fault handling up to phase, faults commute up to phase

Adversariality

w
1

+
w

2

w
1

+
w

3

...

w
1

+
w

n

b2

...
b3

......

w2
...

wn

b1 bn

w
1

+
w

2

w
1

+
w

3

...

w
1

+
w

n

b2

...
b3

......

w2

Figure 2: The set of axioms required for a ZX calculus that is complete for fault equivalence,
divided into three groups: Fully idealised Clifford axioms, intuitive handling of faults and
adversarial reasoning.

3. Axioms that enable adversarial reasoning through Propositions 3.16 to 3.17, appli-

cable in Section 6.

Finally, we state the main theorem of this work:

Theorem 3.18 (Completeness for fault equivalence). The ZX calculus given through

axiomatisation in Fig. 2 is complete for fault equivalence.

Proof. In Section 6.

At this point, we must note the following about the axioms from Fig. 2:

• The axioms use the weight annotation introduced in Section 2.4, where we recall to

use a single weight w to abbreviate (−,−, w).

3. Completeness - Part I: Foundations and Setup 48

• Some of the axioms are direct applications of the algebraic results we just derived,

namely (Mergefe) applies Proposition 3.15, (Combfe) applies Proposition 3.16 and

(Detectfe) applies Proposition 3.17.

• While we show these axioms to be complete in Section 6, they differ from the regular

ZX calculus axioms in that using them explicitly on a regular basis is cumbersome.

Instead, we will use them in Section 4.4 to derive diagrammatic results that are

closer to Propositions 3.15 to 3.17 and can be applied just as naturally.

• We will use all of these axioms while proving completeness, although we do not

formally prove their necessity. Thus, we can not confidently state that this set of

axioms is minimal.

3.4 Soundness

If we were able to derive a fault equivalence relationship between two diagrams that does

not actually exist between them, i.e. becoming unsound, we would have to be careful

using our set of rewrites. This would eliminate a major benefit of the ZX calculus and

similar graphical calculi: They allow unguided exploration to alternative diagrams while

guaranteeing that the underlying interpretation stays the same through soundness. It

is thus vital for the ZX calculus itself to guarantee soundness for semantic equivalence,

which it does [CD11]. Now it is our turn to argue that the axioms we presented are

sound for fault equivalence and thus usable in an explorative sense, so we reserve this

section entirely for this argument.

Proposition 3.19. The axioms in Fig. 2 are sound w.r.t. fault equivalence under edge

flip noise.

Proof. Clifford Rules For each such rule, the LHS and RHS are fully idealised by

definition. Applying Proposition 2.20 both ways yields symmetric fault boundedness,

which is fault equivalence.

(Scalarfe) The diagram has no Pauli webs, so Eff(FLHS) = Eff(FRHS) = {∅}. But then

for both sides, ∅ is the effect of the trivial fault, so

ewtLHS(∅) = ewtRHS(∅) = wt(ILHS) = wt(IRHS) = 0

3. Completeness - Part I: Foundations and Setup 49

Thus, ewtLHS = ewtRHS, and by Corollary 3.13 the sides are fault-equivalent.

(Elimfe) By (Elim), the rewrite holds semantically, so LHS = RHS is given. The diagram

has two possible Pauli webs, one green and one red, and each possible edge flip

flips the same webs on both sides. Thus, similar to (Scalarfe), the rewrite is fault-

equivalent.

(XPhasefe) By (Pi-Copy), the rewrite holds semantically, so LHS = RHS is given. Further,

the diagrams both have exactly one Pauli web:

k π
2

w w

The same single-edge fault flips this web on both sides, so similar to (Scalarfe) both

sides are fault-equivalent.

(Commutefe) Without regards to faults, the rewrite holds up to a scalar using the

(Bialgebra) rule, so the two diagrams are semantically equivalent. Furthermore, the

Pauli webs for the diagrams are generated by two generators each, which correspond

to each other w.r.t. their boundary restriction:

π
2

π
2

w1 w2 w1 w1 w1w2 w2 w2

and

Both atomic faults flip exactly one of these webs on either side, so the set of effects

of the diagram remains the same, and thus as before the rewrite is fault-equivalent.

(Mergefe) By application of (OCM), w.l.o.g. we can assume w2 ≥ w1. Then we observe

that the diagram has only one Pauli web, and on both sides all possible atomic

faults flip it, so they all have the same effect:

π

flipped with w1 flipped with w2 flipped with min(w1, w2)

π π

Then, this axiom is simply an application of Proposition 3.15, where the fault with

weight w1 is removed from the noise model, so the LHS and RHS are fault-equivalent.

3. Completeness - Part I: Foundations and Setup 50

(Combfe) Similar to the previous case, it is easy to see that this is an application of

Proposition 3.16.

(Detectfe) We will refer to the Z-flips weighted as w1, . . . , wn with F1, . . . , Fn, and to

the Z-flips with weight w1 + wj as F1j .

We note that the diagram contains a detecting region that encapsulates all F1, . . . , Fn:

...
w1 wn

b1 bn
w

1
+

w
2

w
1

+
w

3

...

w
1

+
w

n

b2

...
b3

......

w2

Further, we realise that for F1, all composites F1j formed with other faults Fj are

contained in the diagram. Via the connectivity to the boundary edges, F1Fj and F1j

have the same effect. Finally, we see that this is just an instance of Proposition 3.17

and that the rewrite is thus fault-equivalent.

3.5 Outlook: Diagrammatic Extraction of Effect Weights

We briefly sketch the contents of the upcoming work up to and including Section 6.

In Section 4 we develop a diagrammatic model for arbitrary atomic faults using only

unweighted edge flip noise, thus proving that unweighted edge flip noise is universal, and

reason how these models change as they are moved throughout the diagram.

We then formulate and formalise a goal in Section 5: We want to diagrammatically

separate the description of faults from the original diagram, i.e. from its fault-free

semantics. This is directly possible for undetectable faults, as by Proposition 2.32 we

can find equivalents for each individual flipped web from a faults effect on the boundary.

However, for detectable faults, we need to develop additional tools. We thus systematically

provide a few locations inside the diagram that are sufficient for us to find such equivalents

for each fault, which we proceed to call ‘signatures’. Signatures are a precursor to effects,

in the sense that the equivalence relationship between them is strictly stronger than effect

equivalence. We then implement and diagrammatically obtain signatures in Section 5.3.

3. Completeness - Part I: Foundations and Setup 51

Finally in Section 6, we show that the locations we obtained for detecting regions are

special in that we can disconnect them from the original diagram entirely, achieving the

desired separation of a diagrams semantics and the diagrammatic description of its noise

model. These locations, now only part of the noise model, are subsequently eliminated in

a fault-equivalent manner. For all remaining signatures, we identify the effect that they

correspond to and find a normalisation method that reduces every signature in a given

effect equivalence class to one canonical representative. As we retain the minimal weight

for each class, this diagrammatically enumerates the entire function ewt in a normal form,

whereafter Corollary 3.13 guarantees fault equivalence and thus completeness. We note

that this normal form can have an exponential size and thus take exponentially many

rewrite steps to generate; however, it is already known that checking fault equivalence

in general is NP-hard [RPK25, Thm. 3.10].

To visualise, extracting the effect weighting function of a diagram D under noise

model F unfolds as:

Model
in diagram

atomic faults Obtain
signatures

Separate
diagram D
and noise F

Enumerate
all undetectable

faults
Normalise

Section 4 Section 5 Sections 6.1 and 6.2 Section 6.3 Section 6.4

Every modification to the pair (D,F) in this plan is possible (although cumbersome) dia-

grammatically through the axioms introduced in Section 3.3, which we show constructively.

4. Fault Gadgets 52

4 Fault Gadgets

We now tackle the proposed universality of edge flip noise through a construction that

allows explicitly modeling faults from arbitrary weighted noise models using edge flip

noise. This construction is known as fault gadgets, introduced in [RPK25, Def. 6.3]

as a method to diagrammatically track faults operating on multiple fault locations in

circuits. We will be introducing them similarly, and prove universality of unweighted edge

flip noise for all weighted multi-edge noise channels in Theorem 4.6, as a generalisation

of [RPK25, Prop. 6.4]. However, fault gadgets will not remain static trackers as was

their initial purpose: Instead, we will use them as a dynamic reasoning tool for faults

in the proof of Theorem 3.18. Beyond their introduction, this section provides notion

of ‘moving’ fault gadgets throughout a diagram, and implements important algebraic

results from Section 3 diagrammatically for multi-edge noise.

We start deriving models for the simplest of faults, i.e. the three non-trivial edge

flips which are instantiated on a diagram as:

π π

FY

π

FZ

π

FX

We then apply some transformations to find a common structure:

π π

FY

π

FZ

π

FX

= π
2 ππ

π

π
2

= π
2 π

π

- π
2

π

(Fusion)

(Colour)

(Fusion)

(Pi-Copy)

=
(Fusion)

π
2

FY FZFX

π

- π
2

π π

Note how each dashed box in the last diagram is controlled by a green π-phase on top of

it. These controlled units are known as Pauli boxes, since by construction they exactly

provide one of the three Pauli rotations to a diagram edge.

To obtain models for more complex faults, we can control multiple Pauli boxes

at once with one π-phase:

π

π
2 - π

2 =
(Pi-Copy)π ππ

π
2 - π

2

4. Fault Gadgets 53

All faults that we handled so far did already happen. We now move to faults that

may happen, in a way that only utilises single edge flips, even for multi-edge faults.

Crucially, we have to make sure that we only allow the exact multi-edge fault that we

want to obtain. We do this by idealising all edges where a single edge flip would not

have the effect that we want it to have:

⇝

π

π
2 - π

2
π
2 - π

2

In this new diagram, there is only a single edge that is not idealised where as of now

we allow all three edge flips to occur. But there is no use to allowing all three edge

flips: X-flips can be removed from the edge via (Pi-Copy), and similarly Y -flips have the

same effect as Z-flips, so to determine whether the Pauli boxes should be supplied with

a green π-phase or not, it suffices to use Z-flips. Thus, when modeling an atomic fault

F with weight awt(F), we only use that annotation:

awt(F)

π
2 - π

2

So we obtain a construction that can create multi-edge faults with a single Z-flip, while

disallowing other unwanted faults. This construction is exactly a fault gadget, and we

generalised it to be associated with an arbitrary weight.

Definition 4.1 (Pauli boxes). The following four diagrams are the Pauli boxes, associated

with the annotated Pauli rotation:

I := X :=

Y := Z :=- π
2

π
2

Similar to the derivation above, we use fault-free Pauli boxes:

Definition 4.2. Let D be a ZX diagram under a weighted noise model F = (A, awt),

and let F ∈ A. A fault gadget for F is constructed by including fault-free Pauli boxes,

called targets, of the types and on the edges indicated by F . These boxes are connected

4. Fault Gadgets 54

via idealised edges to a red spider. Further, the red spider is connected via a regular edge

to a green spider, called the spawning edge of the fault gadget. The spawning edge is

annotated with awt(F).

For example, the following diagram consists of four standalone wires, i.e. it imple-

ments a four-qubit identity. Suppose we now consider a noise model for this diagram

with an atomic fault I ⊗ Z ⊗ X ⊗ Y that has atomic weight 3. The fault gadget

corresponding this fault is:

I

Z

Y

X
=̂

- π
2

π
2

=̂

- π
2

π
2

3 3 3(Def. 4.1) (Fusion)

The identity Pauli box is inherently disconnected, so its one-legged spider can be merged

into the red distribution spider of the gadget. We choose not to draw the identity Pauli

box at all in the remainder of this work.

Finally, we note that Pauli boxes only implement their corresponding rotation when

provided with a green π-phase spider. When the green spider has phase 0, all boxes

implement the identity rotation. This remains true when generalising Pauli boxes to

multiple edges as fault gadgets:

- π
2

π
2 - π

2
π
2

=

- π
2

π
2

=

- π
2

π
2

= =

(Euler)

(Fusion)(Elim)(Fusion)(Copy)

We can thus directly formalise:

Proposition 4.3. Let D be a ZX diagram and F be a fault for D. If D′ is the diagram

obtained by adding a fault gadget for F to D, then D′ = D, i.e. adding fault gadgets

does not change the linear map that a diagram evaluates to.

Proof. Via repeated application of (Copy), (Fusion), (Euler) and (Elim) as above.

Note that from now on, we will not label applications of the (fault-free) Clifford rules

anymore, unless required for clarity. Thus, all subsequent derivations assume a basic

4. Fault Gadgets 55

intuition for reading and understanding these rule applications. Additionally, if we want

to apply a fault-free Clifford rule on spiders that have auxiliary faulty legs not included

in the rewrite, we can always use (Elimfe) to move the faulty legs further from the spider,

then apply the rewrite, and use (Elimfe) to move them back.

4.1 Universality of Unweighted Edge Flip Noise

We now have everything at our disposal to prove that unweighted edge flip noise can

be used to model arbitrarily weighted multi-edge noise. Shortly returning to edge flip

noise, we can visualise through edge annotations how fault gadgets ‘shift’ the weight

of a fault from the actual diagram edge to the fault gadgets spawning edge. Indeed,

we can use this to progressively idealise an edge:

(wX , wY , wZ)
=̂

(wX , wY , −)
Z =̂

(wX , −, −)
ZY

wZ wZwY

=̂ ZY

wZwY

X

wX

Note that we only allow Z edge flips to occur on the fault gadgets; the actual rotation

applied to the edge is determined by the type of the Pauli box that is in use.

Clearly this concept can be applied to multi-edge faults as well, explicitly modeling

arbitrary atomic faults on the diagram using only edge flip noise. This brings us a

step closer to the claim of universality:

Proposition 4.4. Let D be a ZX diagram and F be a weighted noise model for D. Then

there exists a ZX diagram D′ along with a weighted edge flip noise model F ′ such that

D = D′ and D under F is fault-equivalent to D′ under F ′.

Proof. Let F = (A, awt). To obtain D′ and F ′, first idealise all edges within D, then add

a fault gadget for each atomic fault F ∈ F with a weight annotation equal to awt(F) on

the spawning edge.

Fault gadgets do not influence the linear map by Proposition 4.3, so we directly have

D = D′. Additionally, every fault gadget F has exactly one atomic fault ZF on its

spawning edge that activates the Pauli boxes, and there are no additional non-idealised

edges in the diagram. Similarly, each atomic fault ZF in D′ directly corresponds to an

atomic fault F in D, yielding D =̂ D′.

4. Fault Gadgets 56

We now have a fully idealised diagram save for the spawning edges of the fault

gadgets, which are annotated with the atomic weight of the atomic fault they represent.

However, we realise that this annotation can be viewed as syntactic sugar, using a simple

addition rule that holds in fault gadget heads:

Lemma 4.5 (Head addition). For n ≥ 1, it holds that

w1 wn

w2
... ∑

i
wi=̂

Proof. The case n = 1 is trivial. We show the claim for the case n = 2 first:

w1 w2

w1
w2

=̂
(Fusion)

w1 w2

=̂
(Elim)

w1 + w2

=̂
(Detectfe) w1 + w2

=̂

(Elim)

(Fusion)

(4.1)

The general case n > 2 is then shown via repeated application of the case n = 2:

w1 wn

=̂
(Fusion)w2

... w1
wn

w2 ...

=̂
wn

...
w1 + w2

=̂
(Fusion) wn

...
w1 + w2

=̂

∑
i

wi

... =̂
(Eq. 4.1)

We can now prove full universality of edge flip noise without using weights:

Theorem 4.6 (Universality of unweighted edge flip noise). Let D be a ZX diagram and

F be a weighted noise model for D. Then there exists a ZX diagram D′ along with an

unweighted edge flip noise model F ′ such that

1. D = D′ and

2. D under F is fault-equivalent to D′ under F ′.

Proof. Obtain D′ as in Proposition 4.4, then expand the weights in the fault gadget via

Lemma 4.5:

...
w

=̂

w times

(Lem. 4.5)

4. Fault Gadgets 57

A similar result was already presented in [RPK25, Prop. 6.4] as finding equivalent

ZX diagrams for circuits with noise models. Although the proof is equally constructive,

Theorem 4.6 is expressed for all ZX diagrams and for arbitrarily weighted atomic faults.

Remark 4.7. Using Lemma 4.5 enables a different view on the notion of ‘weight’.

Previously in Definition 2.11, we introduced weight as a notion that is disconnected from

the notion of a weight for a multi-qubit Pauli operator (which is how many non-trivial

single-qubit Paulis are contained in the operator). When considering single-qubit Pauli

operators as being those that occur on their own (i.e. edge flip noise), then the weight of

a fault F is the minimum number of atomic faults that must occur for the composite F

to occur [RPK25].

We now see that all such notions of weight coincide when using fault gadgets without

syntactic sugar: For a fault gadget with w heads, we need w single-edge Z-flips to occur

before there is an undetectable Z flip propagating to the fault gadget. This is because the

heads form pairwise detecting regions that can detect any number of faults that happens

on less than w edges:
...

...

So when modeling an atomic fault F with weight awt(F), we need at least awt(F)

single-qubit faults to occur before F occurs.

Although we would now be able to reason even without annotations, only using regular

and idealised edges, we choose to not use Lemma 4.5 in any future proof. Instead, we opt

to using the syntactic sugar that annotations provide in fault gadget spawning edges, as

this allows us to more concisely and clearly reason about faults. Every proof could also

be performed without these annotations, but would be significantly more cumbersome.

We conclude that fault gadgets provide us with a way to explicitly encode the noise

model of a diagram into the diagram itself. Simply annotating the ZX diagram is only

unambiguous for edge flip noise, whereas additionally using fault gadgets enables clearer

handling of multi-edge faults. Furthermore, treating the noise model as part of the

diagram has more refined uses than just display. In fact, fully encoding the noise model

into the diagram is so useful to us that we provide its own notion:

4. Fault Gadgets 58

Definition 4.8 (GI-form). Let D be a ZX diagram with a noise model F , and let DF be

the diagram that incorporates F into D using fault gadgets. DF is in gadget idealised

form (‘GI-form’ for short), if the only non-idealised edges in DF are the spawning edges

of fault gadgets.

In the remainder of this work, we will use DF to refer to the diagram that im-

plements the noise model F on D using fault gadgets as above. If DF is obtained

as in Theorem 4.6, it is in GI-form by construction, which we will assume to be the

case in the remainder of this work.

4.2 Basic Properties

In Proposition 4.3, we have already seen that fault gadgets do not change the linear map

the given diagram evaluates to. Additionally, we informally reasoned that the only faults

that have some effect in gadgets are the Z components of edge flips on the spawning edge.

Now that we can implement the noise model of entire diagrams using fault gadgets, we

can use fault-free versions of the Clifford rules to derive additional properties.

To start, we see that every non-trivial Pauli box consists of a Clifford diagram C,

a green spider and the adjoint C† of C:

Z =̂
C C†

X =̂
C C†

Y =̂
C C†

π
2 - π

2 (4.2)

Although these equalities also hold semantically for non-fault-free Pauli boxes, fully

idealising all diagrams helpfully provides fault equivalence. Using these equalities, it

becomes easy to see that within one fault gadget, targets on the same edge are self-inverse:

P P =̂ C C† =̂ C C†

(Eq. 4.2)
(CC†=I)

(Fusion)

(Eq. 2.2)

=̂
(CC†=I)

(4.3)

This is expected: Introducing the same edge flip twice on an edge should flip the same

webs as not doing anything on that edge.

We note that in Eq. (4.3), we chose to fully omit the part of the fault gadget that

is irrelevant to the targets to reduce clutter. This is always allowed; we can bundle any

4. Fault Gadgets 59

number of targets and unfuse a separate red spider fault-equivalently. For example, we

can apply the self-inversion of targets in some larger context:

Z Z =̂ =̂X

w

Z ZX

w

=̂
(Eq. 4.3)

X

w

X

w

As long as one proves the desired property with just this dangling red spider, omitting

the context of the fault gadget is valid. As a side effect, this makes such properties

usable outside of fault gadgets.

We now recall the rule (Scalarfe) from the completeness axioms in Fig. 2. The scalar

with annotation w may be seen as a fault gadget that has no targets. Using (Scalarfe)

and finally eliminating the scalar using the fault-free Clifford rules, we can fully elim-

inate the fault gadget:

w

=̂
(Scalarfe)

=̂ (4.4)

A fault gadget with no targets represents exactly the trivial fault I. We should not have

this in our set of atomic faults, so removing such gadgets with Eq. (4.4) shows that fault

gadgets are fully consistent with noise models as defined in Definition 2.11.

We can also show that gadgets allow us to diagrammatically treat faults up to global

phase. To motivate this, we must revisit yet another scalar accurate rewrite, in this

case of the (Copy) rule which we obtain from [KvdW24]:

=
exact... ... (4.5)

Then, additionally using the scalar accurate (Pi-Copy) from Eq. (2.3), we consider what hap-

pens when a gadgets red spider obtains a phase and a Z flip is placed on its spawning edge:

k π
2

π

=
exact

π k π
2

π
πππ

π
=

exact

(Fusion) (Pi-Copy)
π

k π
2 =

exact
π k π

2

πππππ

(Eq. 4.5)

So placing a k π
2 phase on the red spider results in two free floating scalar diagrams apart

from the fault that the gadget represents. It can be shown that the first scalar diagram is

4. Fault Gadgets 60

equal to 1√
2 , while the second is equal to

√
2eik π

2 . Thus, using k ∈ 0, . . . , 3 the total phase

incurred when a fault gadget’s atomic fault spawns is ik, which means we can visualise

the phase of a fault in its gadget. By (XPhasefe), we can simply remove this phase from

the gadget and thus consider all faults that only differ in phase diagrammatically equal.

This makes fault gadgets consistent with us treating faults up to a scalar algebraically.

We want to immediately employ this technique to diagrammatically show Y ∝ XZ.

However, we need a small intermediate result, i.e. how we can transform a one-legged

spider of one color into the other [BPW17]:

π
2 =̂

π
2

=̂

π
2

(Euler) - π
2

- π
2

- π
2 =̂

- π
2

- π
2 =̂

- π
2

- π
2 =̂

- π
2

- π
2 =̂

- π
2

(4.6)

We can then show Y ∝ XZ:

=̂
π
2

π
2

π
2

π
2

π
2

π
2

=̂
π
2

π
2

π
2

(Bialgebra)

=̂
π
2

π
2

- π
2 =̂

π
2

π
2

- π
2 =̂

π
2 - π

2

π
2

- π
2

(Euler)

(Euler)

π
2

=̂
π
2 - π

2

π
2 =̂

π
2 - π

2

(XPhasefe)

w w

w

w

w w w

w w

=̂

(Eq. 4.6)

(4.7)

We might now encounter cases where multiple targets of different types reside on the

same edge. This could prevent us from directly using Eq. (4.3) to eliminate two targets

if those are not direct neighbours. However, we find that individual targets attached to

gadgets commute, regardless of how they are connected to gadgets:

Proposition 4.9 (Gadgets commute). Let DF be a gadget-idealised ZX diagram based

on the underlying diagram D. For a single edge e in D, targets of fault gadgets from DF

on e may be arbitrarily and fault-equivalently rearranged.

Proof. In Appendix A.

So fault gadgets already have some limited room to move, by removing any restrictions

on the order in which targets can reside on an edge. However, we can equip them with

even more flexibility, showing how they can change to move through a diagram.

4. Fault Gadgets 61

4.3 Moving Fault Gadgets

Indeed, we are missing just one result to show how fault gadgets move:

Proposition 4.10. Let D be a fully idealised ZX diagram, and let |D⟩ be the diagram

obtained by bending around the input wires of D. Then if |D⟩ is stabilised by a Pauli

operator P1 ⊗ · · · ⊗ Pn, it holds that

=̂|D⟩ ... |D⟩ ...

Pn

P1

w w

(Stabfe)

Proof. We start by proving the claim for all individual spiders that could be contained in

D. By the application of (Colour), it suffices to prove for k π
2 -phase Z-spiders. We observe

that the Pauli operators stabilising a given spider are exactly those that form a valid

Pauli web around the spider, so we have to be able to introduce targets according to all

possible webs of the spiders.

On any spider, we can introduce targets of the spiders own colour two at a time:

=̂ =̂k π
2... k π

2...k π
2... =̂ k π

2...

w w w w

(Fusion)
(Eq. 2.2)

(4.8)

Then for spiders with a phase of {0, π}, we can introduce targets of the opposite colour

on all legs:

kπ ... =̂ ...

kπ

...

kπ

=̂ ...

kπ

=̂

...=̂
kπ

kπ ...=̂
kπ

kπ ...=̂

kπ

kπ ...=̂
(XPhasefe)

w w w w

w w w w

This already suffices to prove the claim for all Pauli webs around {0, π}-phase spiders,

and for {−π
2 ,

π
2 }-phase spiders where the web is not of the opposite colour.

4. Fault Gadgets 62

The cases of {−π
2 ,

π
2 }-phase spiders with a web of the opposing colour remain. These

webs require an odd number of legs to be highlighted in the spiders own colour. We first

observe for π
2 -phase spiders:

π
2 ... =̂ π

2 ... =̂ π
2 ...

(Eq. 2.1)
- π

2 - π
2- π

2

=̂ ...

- π
2- π

2

=̂ ...

- π
2- π

2

=̂ ...

- π
2- π

2

=̂ ...

- π
2- π

2

=̂ ...

- π
2- π

2

=̂ ...
- π

2- π
2

π
2

π
2

π
2

=̂ π
2 ...

- π
2

π
2(Eq. 2.1)

w w ww

w w w

www

(4.9)

So together with Eq. (4.8) the claim holds for the case π
2 .

Then the case of (−π
2)-phase spiders is simply a variation of Eq. (4.9) using an

additional π-phase:

- π
2 ... =̂ π

2 ...

π

=̂ π
2 ...

- π
2

π
2

π

=̂ π
2 ...

- π
2

π
2

π

(Eq. 4.9)

=̂ π
2 ...

- π
2

π
2

π

π =̂ - π
2 ...

- π
2

π
π
2

=̂ - π
2 ...

- π
2

π
2(XPhasefe)

w

w

w

w

ww

w

So the claim thus holds for all webs of individual spiders. But then exactly as Pauli webs

compose in larger diagrams we can compose the introduction of these targets. Pauli webs

must be consistent / compatible on all legs, so any edges internal in D must feature each

target either zero or two times, and any boundary edges feature each target zero or one

times. This allows applying Eq. (4.3) to cancel out any targets on internal edges in D,

leaving only targets on boundary edges. Every Pauli web restricted to the boundary

provides a possibly trivial stabiliser so this suffices to prove the original claim.

We can thus guide the movement of a fault gadget via a Pauli web. Consider for

4. Fault Gadgets 63

example the following diagram with a Pauli web:

π
2

π

By picking any spider inside the diagram, we can recover local stabiliser information that

the Pauli web provides (if any) and apply (Stabfe) to add targets according to this local

stabiliser. Say for example, we are given the following fault gadget F and pick some

spider that has highlighted legs. Then we can add targets to F as follows:

π
2

π

X

wF

π
2

π

X

wF

=̂
(Stabfe) Y

X

X

With target commutation by Proposition 4.9, removal of duplicate targets by Eq. (4.3)

and decomposition of Y -targets by Eq. (4.7), we effectively recovered the scalar-ignorant

rules (Fusion) (for same type targets) and (Pi-Copy) (for opposite type targets):

π
2

π

X

wF

Y

X

X =̂ π
2

π

wF

Y

X

Iterating this, we can move multi-edge fault gadgets throughout the diagram, according to

the same constraints that are put on π-phases by the ZX calculus. This technique

will prove useful in Section 5.3.

4.4 Implementing Axioms for Multi-Edge Noise

Now that we can somewhat freely move fault gadgets around the diagram, updating

their targets as we go along, we might encounter a special case: We can accumulate

several fault gadgets that have an equivalent collection of targets, i.e. the same Pauli

boxes on the same edges. These fault gadgets clearly represent congruent faults. Without

fault gadgets, through repeated application of Proposition 3.15 we should be able to

discard all but one and update its weight annotation to the minimum weight of all

4. Fault Gadgets 64

encountered annotations. As it turns out, Proposition 3.15 also applies to fault gadgets,

and further we can show this purely diagrammatically, using its diagrammatic equivalent

for edge-flips, (Mergefe) from Fig. 2:

Proposition 4.11. Let DF be a ZX diagram in GI-form, and let F1 ≡ F2 be congruent

faults in F . Then the fault gadgets for F1, F2 have the same targets on the same edges,

and it holds that:
w2w1

P1 P1

Pn Pn

... =̂

min(w1, w2)

P1

Pn

...

Proof. In Appendix A.

However, this is not the only algebraic result that can be implemented diagram-

matically. We can also apply a similar strategy to (Combfe) from Fig. 2, applying

Proposition 3.16 to fault gadgets:

Proposition 4.12. Let DF be a ZX diagram in GI-form, and let F1, F2 be arbitrary

faults in F , then it holds that:

w1 + w2w1

P1,1 P1,1

P1,n P1,n

...

=̂
P2,1 P2,1

P2,m P2,m

...

w2

w1

w2

P1,1

P1,n

P2,m

P2,1

Proof. In Appendix A.

Finally, we want to apply this to (Detectfe), which implements Proposition 3.17 for

multi-edge faults. However, we find that the axiom itself is already fairly complex. We

4. Fault Gadgets 65

introduce an intermediate step, that shows that from a set of detectable faults in the

same detecting region, we can introduce their combinations (as a variation of (Combfe)):

Proposition 4.13. For any w1, . . . , wn it holds that:

...
w1 wn

b1 bn

w
1

+
w

2

w
1

+
w

3

...

w
1

+
w

n

b2

...
b3

......

w2

=̂
...

w1 wn

b1 bnb2

...

w2

Proof. In Appendix A.

Then, we can show that (Detectfe) may be lifted to multi-edge faults represented by fault

gadgets. To be precise, in the most complex diagrammatic rewrite yet, we show that we can

entirely remove the fault gadget whose spawning edge atomic fault we remove in (Detectfe):

Proposition 4.14. For any w1, . . . , wn it holds that:

w1

P1,1

P1,j

...

P2,1

P2,k

...

w2

...
... =̂

Pn,1

Pn,l

... ...

...

wn...

...

w1 + w2

P1,j

P1,j

...

P2,1 P2,1

P2,k P2,k

...

w2

...
...

Pn,1 Pn,1

Pn,l Pn,l

... ...

...

wn...

...

P1,j

P1,j

...

...

...

w1 + wn...

Proof. In Appendix A.

We will make extensive use of these rules in Section 6, when considering how multiple

atomic faults, represented by fault gadgets, interact diagrammatically.

5. Fault Signatures 66

5 Fault Signatures

So far, for a diagram D with a noise model F , we implemented F into D to obtain a

diagram DF . However, the goal is to achieve a separation in DF between the original

diagram’s fault-free semantics and a diagrammatic description of F . To make the

separation process fault-equivalent, we will need to retain a fault’s effect throughout. This

involves finding, for some gadget of a fault F , a gadget of a fault F ′ with the same effect,

but such that the gadget of F ′ only places targets on the boundary of D.

When we showed through a contrapositive that detecting regions are indeed those that

detect faults in Proposition 2.33, we already constructed such boundary-only faults F ′

for undetectable faults. This used the fact from Proposition 2.32 that for every stabiliser

of the diagram, we can find an element of the Pauli group that anticommutes only with

this stabiliser. However, for detectable faults this method is insufficient; the method via

Proposition 2.32 can only work for stabilising Pauli webs and not detecting regions as it

would be unsound for some F ′ outside any detecting region to be effect equal to an F

inside a detecting region. If we want to find F ′ even for detectable F , we need to expand

the possible locations that F ′ may populate beyond the boundary of D.

This section first introduces ‘flip operators’, a notion that we use to find Pauli operators

such that we can flip detecting regions individually, similar to Proposition 2.32. We use

these additional operators to define ‘signatures’ of a fault F . A signature structurally

describes an alternative F ′ with the same effect as F , limited to the boundary and

employing flip operators. Subsequently, we implement the diagrammatic transformation

to signature faults for fault gadgets.

5.1 Flip Operators

We enable flipping detecting regions individually, similar to Proposition 2.32 for stabilisers,

via:

Definition 5.1 (Flip operators). Given a ZX diagram D with edges E and a detecting

region group R, a flip operator collection is a set

flipop ⊆ P |E| ,

5. Fault Signatures 67

such that if R1, . . . , Rd generate R, for each Ri there is a unique combination of operators

from flipop such that the composite fault flips only Ri.

Informally, the flip operator collection allows us to, for each independent generator Ri

in a generating set R1, . . . , Rd, construct a Pauli operator that anticommutes only with

Ri. Finding such a collection is possible for every diagram, through a process that adjusts

the generators for R similar to Gaussian elimination for stabilisers [Got97, Sec. 4.1]:

Proposition 5.2. A flip operator collection exists for every ZX diagram.

Proof. Let R be the detecting region group of the diagram D and let R1, . . . , Rd be

generating for R. Now choose an arbitrary region generator Ri and for it an arbitrary

highlighted edge e. If e is highlighted by Ri in red, we set p = Z, otherwise we set p = X.

This Pauli operator p anticommutes with the highlighting Ri defines for e and thus placing

p on e would flip at least Ri.

To ensure it flips only Ri, we obtain new generators for all j ̸= i that p would flip:

R′ := {Ri} ∪ {Rj | pRj = Rjp} ∪ {RjRi | Ri ̸= Rj ∧ pRj = −Rjp}

Then the generator set R′ is also generating R, but for every Rj ∈ R′ except Ri that

was previously flipped by p, we multiplied Ri onto it to flip it back. This results in p

commuting with the highlighting e from every other detecting region Rj , so it only flips

Ri.

We can iterate this procedure until we find a unique edge flip for each generator,

yielding a flip operator collection.

The choice of these flip operators is not unique: Choosing a different region or edge to

start the elimination process with may lead to a different generating set or different flip

operators entirely. However, once we construct a flip operator collection that is provably

valid for a single generating set, it remains valid for all generating sets of R. As in the

proof above, we can simply change the generating set by multiplying one generator with

all others. These operations may be exactly mirrored in the flip operator collection by

multiplying the flip operator for a generator with the flip operators of others.

5. Fault Signatures 68

5.2 Signatures

The signature of a fault is now a description of its action on the boundary and used flip oper-

ators:

Definition 5.3 (Fault signature). Let D be a diagram with boundary edges B and a flip

operator collection flipop. The signature of a fault F is a tuple

(XF , ZF , LF) ∈ P(B) × P(B) × P(flipop) ,

1. where XF , ZF are the boundary edges upon which a X,Z flip should be placed, and

2. LF is the set of flip operators that F requires,

such that instantiating the fault Fsig obtained by multiplying all edge flips and operators

together obeys eff(Fsig) = eff(F).

Via this definition, we ensure that the alternative faults we describe through signatures

are unified in their interaction with the detecting regions. We can guarantee this as

for a specific generator the combination of flip operators must be unique. Further, we

can guarantee that we can always find at least one signature for any fault, regardless

of the specific flip operator collection:

Proposition 5.4. Let D be a ZX diagram with a noise model F , and let flipop be a flip

operator collection for its detecting regions. Then every fault F ∈ ⟨F⟩ has a signature

Fsig defined on flipop.

Proof. Let ⟨W ⟩ be the group of Pauli webs for D and let R ⊆ W be the detecting

generators. By Definition 5.1, for each r ∈ R we can find a unique combination of flip

operators from flipop such that their composite flips only r. Let this combination be

given by the composite Fr. Then we define:

F ′ :=
∏

r∈eff(F)∩R

Fr .

So we constructed a fault F ′ that is guaranteed to flip the same detecting webs as F .

Then, let S+ ⊆ W be the set of stabilising generators that F flips but F ′ does not flip

(so they still have to be added to the effect of F ′), and similarly let S− ⊆ W be the set

5. Fault Signatures 69

of stabilising generators that F ′ flips but F does not (so they have to be removed from

the effect of F ′, i.e. flipped back). By Proposition 2.32, we can find a fault Ts for each

stabiliser s ∈ (S+ ∪ S−) such that Ts anticommutes only with s. Finally, we construct a

signature by correcting the differences as indicated by S+, S−:

Fsig := F ′ ·

 ∏
s+∈S+

Ts+

 ·

 ∏
s−∈S−

Ts−

 .

As a signature for a fault F can be instantiated to an actual fault Fsig, we may also

model the signature via a fault gadget that places targets according to Fsig:

Definition 5.5 (Signature gadget). Let D be a ZX diagram with a noise model F and a

flip operator collection flipop. A fault gadget for F ∈ F is a signature gadget w.r.t. flipop

if there is a signature defined through flipop that uses such that instancing this signature

leads to a fault Fsig and F ≡ Fsig.

Since such Fsig derived from signatures of F are by definition effect equivalent to F ,

we are able to fault-equivalently replace F with some Fsig in the noise model. However,

we have to show that such a replacement is possible diagrammatically. We thus proceed

with a gradual transformation between a fault gadget and one of its signatures gadgets.

5.3 Transforming Gadgets Into Signatures

We now show that it is always possible, given two fault gadgets, to move one fault gadget

such that it is exactly equal (i.e. congruent) to the other. This will be done by discovering

a stabiliser between the fault gadgets, which induces a Pauli web and thus a way to

rewrite one fault gadget into another with the procedure discussed in Section 4.3. For

an illustrative example, we take the following diagram D that contains two detecting

regions, for which we chose the indicated flip operators:

X flip operator

X flip operator

5. Fault Signatures 70

We now annotate the diagram D with simple noise model that has two atomic faults.

One fault gadget represents some F , while the other represents one of its signatures

Fsig. We thus obtain DF :

Y

Y

Y

X

X

XZ

F Fsig

Note that since stabilisers can only have phases ±1 and not ±i, finding a stabiliser

between the gadgets requires care with the scalar accurate relationship between the

two faults that holds in this exact diagram configuration. In the above example, as we

decompose Y = iXZ and keep this order on the edges, introducing a Z fault on just

the spawning edge of Fsig would result in a fault that can be pushed (using (Pi-Copy),

(Fusion) and (Elim)) to be exactly F , up to a scalar of i:

ππ
i

ππ
i

ππ

ππ
i

ππ
i

ππ

=
π

ππ
i

π
i

π
(Pi-Copy) =

(Pi-Copy)
(Fusion)

π
i

π

i π=(Fusion)

π

Fsig F

Thus, to proceed, we need to capture this in the diagram by augmenting Fsig using

(XPhasefe), so that it introduces the necessary phase of i when provided with a Z-flip

on the spawning edge:

Y

Y

Y

X

X

XZ

- π
2

F Fsig

5. Fault Signatures 71

Now we modify DF , by converting the green spider of both fault gadgets into a bound-

ary. This is a distinctly different diagram, so we stop annotating the noise model for now:

Y

Y

Y

X

X

XZ

- π
2

We say that we opened the gadgets to obtain Dopen. Note that this is not a traditional

ZX rewrite, since it adds boundary vertices and thus changes the dimensionality of

the possible interpretations of DF .

Because eff(F) = eff(Fsig) by definition of a faults signature, placing a π-phase on

both fault gadgets would flip all webs from the effect twice, providing an overall effect of

∅ = eff(I). Similarly, we can introduce two green π-phases at the new boundary edges.

However, since this also has an overall effect of ∅, it is much less a fault, but rather a

new stabiliser of Dopen. We can prove that this works for every pair of effect equivalent

fault gadgets, and that in fact only such pairs provide stabilisers:

Proposition 5.6. Let DF be a ZX diagram with two faults F1, F2 ∈ F , implemented as

fault gadgets. Further, let Dopen be obtained from opening the fault gadgets of F1, F2 in

DF and let b1, b2 be the newly created boundary edges corresponding to the gadgets of

F1, F2 respectively. Then there is a stabiliser of Dopen consisting of just two Z edge flips

on b1, b2 if and only if eff(F1) = eff(F2).

Proof. The proof starts with assuming eff(F1) = eff(F2) and reversibly working towards

the existence of a stabiliser. We note that we can recover F2 from the composite using

F1, since even if they anticommute we consider faults up to global phase, and thus we

can write

F1F2F1 = ±F1F1F2 = F1F1F2 = IF2 = F2 .

5. Fault Signatures 72

We can then derive that the composite fault must have trivial effect:

eff(F1) = eff(F2) ⇔ eff(F1) = eff(F1F2F1) ⇔ eff(F1) = eff(F1) ⊕ eff(F1F2)

⇔ ∅ = eff(F1F2) .

We acknowledge that since b1, b2 are boundary edges created from the spawning edges

of the fault gadgets, placing a Z flip on either of them must have the same effect as F1, F2

respectively and placing a Z flip on both edges must have the same effect as the composite

F1F2. But then placing Z ⊗ Z on b1, b2 has trivial effect and by Proposition 3.10 this is

exactly the case when ±Z ⊗ Z is a stabiliser of Dopen.

By Definition 2.27, a stabiliser can be directly associated with a stabilising Pauli web.

Necessarily, we can also apply this to Dopen, and obtain a Pauli web that highlights only

the two newly obtained boundary edges in green. This Pauli web provides us with a

recipe to rewrite one fault gadget into another. We section the web into blocks to encase

each spider of the original D with highlighted legs separately:

- π
2

π
2 - π

2

- π
2

- π
2

π
2

π
2

- π
2

π
2 - π

2

- π
2

- π
2

π
2

π
2⇝

Since the local webs inside the blocks represent local stabilisers of their spiders, we

can apply (Stabfe) to add all of these stabilisers to the fault gadget for F . However,

we only do this for blocks where the spider does not belong to any fault gadget, since

we want to move the fault gadget only through the original diagram D, not through

or into other fault gadgets5. Returning to DF , we now obtain a new fault F ′ from
5In particular, we want to avoid moving a fault gadget into itself, which would lack a clear interpretation.

5. Fault Signatures 73

F by adding the local stabilisers6:

Y

Y

Y

X

X

YZ

F ′

X

Y

X

X

Y

Y

Finally, we deduplicate targets on all edges as much as possible via gadget commutation

(Proposition 4.9), converting between Y and X,Z targets (Eq. (4.7)), fault phase

elimination (with (XPhasefe)) and target elimination (Eq. (4.3)):

Y

Y

XX

F ′′

Then by construction of the Pauli web, we have F ′′ ≡ Fsig which concludes the rewrite.

Note that throughout the process, we only opened the diagram to derive a Pauli

web as a guidance for which targets to add to F . In the diagram DF , we never actually

changed the spawning edge, so the weight annotation for F directly carries over to F ′′.

Due to this we can simply annotate Fsig with that same weight too.

We formalise for future reference:

Proposition 5.7. Let F1, F2 be two faults with eff(F1) = eff(F2) formalised as fault

gadgets in a ZX diagram DF . Then we can fault-equivalently rewrite the gadget for F1

into a gadget that is congruent to the gadget for F2.

Proof. Obtain the diagram Dopen by opening both fault gadgets. By Proposition 5.6

we can obtain a ±Z ⊗ Z stabiliser on the newly created boundary edges, and through
6We do not draw Fsig anymore and unfuse the distributing spider to reduce clutter.

5. Fault Signatures 74

Definition 2.27 we obtain a Pauli web for this stabiliser. Restricting this Pauli web

to spiders that belong to the original diagram D provides a way to rewrite the gadget

using (Stabfe), (XPhasefe) as well as Proposition 4.9 and Eqs. (4.3) and (4.7), as outlined

above.

6. Completeness - Part II: Normal Forms and Final Proof 75

6 Completeness - Part II: Normal Forms and Final Proof

Let us revise what we covered in Sections 3 to 5:

• We restated w-fault boundedness, and through it all related notions, as element-wise

comparisons of the weighting function ewt for fault effects in Section 3. Additionally,

we sketched how we want to obtain and enumerate this function diagrammatically

by separating a diagrams fault-free semantics from the description of its noise model.

• We explicitly modeled atomic faults inside the diagram and discovered how they

change when moved throughout the diagram in Section 4.

• We identified issues when trying to move detectable faults outside the diagram, and

proposed the intermediate formalism of signatures to resolve them, along with a

diagrammatic transformation of fault gadgets to signatures in Section 5.

Now, we are left with a diagram that has all fault gadgets collected as signature gadgets, so

for a fixed choice of flip operators each gadget remains in minimal contact with the original

diagram. For this last section of part concerned with completeness, complementing the

work from Section 3, it remains to show that we can indeed fully disconnect signature

gadgets from the original diagram, and finally fully enumerate the function ewt.

6.1 Sinks

We recall that for a diagram D with detecting region group generated by R1, . . . , Rd,

we can use a flip operator collection to individually flip / ‘steer’ the sign of individual

Ri. When used as set out in Definition 5.1, these collections suffice to define and think

about faults signatures algebraically.

However, once we instantiate a signature to a particular fault gadget on the diagram,

we notice two downsides of this definition:

1. The flip operators, living in P |E|, could have an arbitrary number of non-trivial

Pauli components, increasing complexity for handling them. Ideally, we could unify

the flip operators such that every operator has exactly one and exactly the same

non-trivial Pauli component. This would enable us to prove subsequent statements

for this single type of operator only.

6. Completeness - Part II: Normal Forms and Final Proof 76

2. The resulting fault gadget is still stuck inside the detecting region and cannot leave

it. Ideally, we resolve this and make some progress towards the separation between

diagram semantics and its noise model.

We address both issues with one additional notion, which we will call sinks.

In Section 4 we already derived a construction diagrammatically modeling something

that arbitrarily flips Pauli webs, while only being activated by a single edge flip: fault

gadgets! We recall that a fault flips a detecting region R exactly when, seeing both

as a Pauli operator, it anticommutes with R.

Similarly, we can classify fault gadgets in regard to whether they commute andor

anticommute with a detecting region R. Instead of doing this algebraically, we will

work on visualising this in the diagram. To start, we observe that the controlling edge

coming out of a Pauli box is highlighted red if and only if that Pauli anticommutes

with the edge highlighting it is placed on7:

π
2 - π

2

π
2 - π

2

π
2 - π

2

Then, similar to how we constructed fault gadgets, we can extend this to general multi-

edge Pauli box constructions:

Proposition 6.1. A fault gadget represents a fault that anticommutes with a Pauli

web P if and only if the gadget extends P such that the spawning edge of the gadget is

highlighted red.

Proof. Let k be the number of Pauli boxes whose controlling edge must be highlighted

red if they are placed on their edges as targets of the gadget. Recall that as above, these

are exactly the Pauli boxes representing Pauli operators that anticommute with the Pauli
7This edge does not necessarily have to belong to a detecting region. Indeed, the edge can also be part

of a stabilising Pauli web, in which case the red highlighting identifies Pauli boxes that would flip this
stabilising web.

6. Completeness - Part II: Normal Forms and Final Proof 77

represented by the edge highlighting. Further recall from Section 2.1 that two multi-qubit

Pauli operators anticommute if and only if an odd number of their single-qubit operators

anticommute.

Now if k is even, the red spider bundling all the controlling edges from the gadgets

targets has a valid local web without highlighting the spawning edge; conversely if k is

odd, the spawning edge must be highlighted as well for the web to be valid:

k is even k is odd

Thus, the spawning edge is highlighted red if and only if k is odd, which as outlined is

the case if and only if the fault of the gadget and P anticommute.

It is through this extension that we can employ fault gadgets to tackle the first

downside of flip operators: For each flip operator L we place a fault gadget FL into

the diagram and replace L by a flip operator L′ consisting only of a Z-axis flip on the

spawning edge of FL. Thus, we have significantly simplified the flip operators, so that

they are completely described by a single flip on the spawning edge of the fault gadget.

However, we do not want this new fault gadget to actually introduce any new faults.

Thus, we fully idealise its spawning edge, providing us with the required notion of a ‘sink’:

Definition 6.2 (Sinks). A sink for a flip operator L ∈ flipop is a fault gadget that places

targets according to L, with a fully idealised spawning edge.

To construct an example we will be using for this section, consider the follow-

ing diagram D that has two detecting region generators with single-edge flip opera-

tors chosen as indicated:

X-flip operator X-flip operator

6. Completeness - Part II: Normal Forms and Final Proof 78

We consider a noise model F that models some X edge flips happening for both detecting

regions and obtain its implementation with fault gadgets as DF as indicated:

XX

w2 w3

X
w1

Now add sinks, i.e. fully idealised gadgets according to the flip operators, and obtain

new operators unified in type:

XX

w2 w3

X X

Z flip operator Z flip operator

X
w1

Effectively, the flip operators are shifted from a proper diagram edge into a special fault

gadget. By definition, this also works for multi-edge flip operators, thus providing a way

to handle such multi-edge operators with single-edge replacements.

We now transform fault gadgets into their signatures via the method discussed in

Proposition 5.7. Signatures employ flip operators which are now inside fault gadgets and

moving targets inside fault gadgets may seem like the exact thing that we wanted to avoid

in Section 5.3. However, as sinks are fully idealised fault gadgets, we may view them as

part of the original diagram during application of Proposition 5.7. The diagrammatic

conversion still works; for example, we can move an X target inside an X sink:

XX =̂ =̂ =̂
(Elim)

=̂ X

Z

(Def. 4.1) (Def. 4.1)

We can thus move all targets anticommuting with their detecting regions onto their

6. Completeness - Part II: Normal Forms and Final Proof 79

spawning edge. Continuing with the running example, we employ this as follows:

w2

w3

X X

X

X

Z

Z

X

X

w1

X

Z

XX

w2 w3

X X

X
w1

=̂
(Prop. 5.7)

We now observe that we have yet to tackle the second downside of flip operators:

Even using sinks, our targets are still inside the detecting regions. Additionally, the

original diagram is modified quite heavily by now, by adding numerous fault gadgets

as a standardised way to model either faults or flip operators. We proceed to show

how to fully separate the gadgets describing the noise model and the original diagram,

resolving both issues at once.

6.2 Recovering The Diagram

To start on this separation, we propose the following rewrite:

Proposition 6.3. Let D be a Clifford ZX diagram with boundary edges B, and let

b ∈ B be a boundary edge such that capping b with a green π-phase makes the composite

diagram zero, i.e.:

D

π

= 0

Then the following two diagrams are semantically equivalent:

D D= (6.1)

Proof. We employ the well known fact that any finite linear map can be expressed as a

sum of its actions on all elements of an orthonormal basis [NC10]. For our purposes, we

choose the X-basis, represented through green {0, π}-phase spiders [KvdW24]. Since the

remainder of the diagram D remains unchanged, we only need to show the action on the

6. Completeness - Part II: Normal Forms and Final Proof 80

basis elements on the boundary edge b is the same, without introducing a relative phase.

That is, we must show that

D

π

D= D

π

+D +

holds up to a global scalar. By assumption the second summand on the LHS is 0, the

second summand on the RHS contains a 0 scalar, and thus we are left with:

D= +D + 00D = D=

This trivially holds up to the depicted global scalar 2, as required. So the two diagrams

in Eq. (6.1) are semantically equivalent.

We immediately use Proposition 6.3 to show that we can disconnect flip operators

from the detecting regions in which they are contained:

Proposition 6.4. Let D be a Clifford ZX diagram such that

̸= 0

D

......

...

w1

wn

where the highlighting forms a detecting region in D and the overall diagram is non-zero.

Then the following is a fault-equivalent rewrite:

D

......

...

D

......

...

=̂

w1

wn

w1

wn

6. Completeness - Part II: Normal Forms and Final Proof 81

Proof. Consider the following subdiagram D′:

D

......

...

D′

w1

wn

Since the red highlighting extends to a detecting region in D, capping off D′ with a green

π-phase would result in that detecting region being flipped and thus D′ becoming zero.

We then apply Proposition 6.3 as a fully idealised variant and obtain a new diagram

where the sink is disconnected. Since the Clifford ZX calculus is complete [Bac14], we

must be able to obtain this new diagram using just idealised Clifford rewrites. But since

idealised rewrites are trivially fault-equivalent, the full rewrite is fault-equivalent.

We continue our running example by first realising all targets inside sinks to Z spiders,

fusing them together and subsequently applying the proposition we have just proven8:

w2 w3

X

X

X

X

w1

X =̂

w2 w3

X

X

X

X

w1

X

(Prop. 6.4)

Although the total number of detecting regions increases, the number of detecting regions

that are flippable by faults stays the same. For all future rewrites, we may ignore all

detecting regions in the main diagram for determining detectable effects, since there

are no fault gadgets that have targets inside them.

Once we used this rewrite to disconnect the flip operators, we can deconstruct

sinks again using idealised Clifford rules and finally recover the original diagram as
8Drawing two overlapping detecting regions at the same time is difficult, so we opt for bending the

overlapping highlightings to distinguish them. This has no other special interpretation.

6. Completeness - Part II: Normal Forms and Final Proof 82

completely idealised:

w2 w3

X

X

X

X

w1

X

w2 w3

X

X

X

X

w1

X

=̂

D

=̂...

We define this to be our first normal form:

Definition 6.5 (SN-form). Let D be a diagram with a noise model F and DF the

implementation of F using fault gadgets. DF is in signature normal form (‘SN-form’ for

short) if it is in GI-form, every fault gadget is a signature gadget w.r.t. to the same flip

operator collection, and no fault gadget has targets inside detecting regions in D.

As in our example, the signature normal form of a diagram DF that implements a

noise model F on a base diagram D fits the template:

|D⟩ ...

Some Clifford
unitary that
contains all
signatures

DF

describing F

...

We could have brought any diagram under any weighted noise model into this

form. Indeed, we can reason:

Proposition 6.6. For every ZX diagram D with some noise model F the implementing

diagram DF has a signature normal form into which it can be fault-equivalently rewritten.

Proof. By construction the diagram DF is in GI-form. Then by Proposition 5.2, we can

find a flip operator collection flipop, and via Proposition 5.4 there exist signatures for

every fault F ∈ ⟨F⟩ w.r.t. the collection flipop. We may add sinks via idealised Clifford

rewrites, transform fault gadgets into their signatures via Proposition 5.7, and disconnect

flip operators from sinks via Proposition 6.4. Finally, the remaining sinks are reduced via

idealised Clifford rewrites, to obtain a diagram D′
F .

6. Completeness - Part II: Normal Forms and Final Proof 83

The diagram D′
F is still in GI-form since all applied rewrites preserve it. Further, all

fault gadgets have targets that are either on the boundary or activate flip operators, so

every fault gadget is a signature gadget. Since disconnecting the flip operators leaves

them free floating and in particular outside D, no fault gadget can have targets inside D.

So D′
F is in signature normal form.

We explicitly remind ourselves that this signature normal form is not unique for two

reasons. For one, we can change our set of flip operators together with the generating set

for detecting regions. The choice of flip operators has an influence on the action of faults

on the boundary and thus their signature. This remains true even as flip operators as such

are now disconnected from the original diagram and exist free-floating, only connected

to fault gadgets. For another, a single fault may have multiple distinct signatures; for

example, the fault F from Section 5.3 may have the following alternative signature:

X

X

XX

F ′
sig

We tackle these challenges separately, and first focus on flip operators by completely

eliminating them without leaving SN-form.

6.3 Enumerating Undetectable Faults

We recall that for fault equivalence through Corollary 3.13 we only need equivalence

of all undetectable effects. Although we do not handle effects yet, we can already get

rid of detectable signatures fault-equivalently. Signatures still describe faults, only in

a more structured manner, so we could simply apply Proposition 3.17 to algebraically

replace all atomic faults detected by the same detecting region.

However, this replacement is not yet purely diagrammatic. For a diagrammatic

implementation of Proposition 3.17 we turn to the axiom (Detectfe) for single-edge faults,

and to Proposition 4.14 for multi-edge faults. This is applied to our running example,

6. Completeness - Part II: Normal Forms and Final Proof 84

removing the detecting regions and thus eliminating the flip operators entirely:

w2

w3

X

X

X

X

w1

X

|D⟩ =̂
X

|D⟩

w1 + w2

(Prop. 4.14)

w2

w3

X

X

X

X
=̂

X
|D⟩

w1 + w2

(Elimfe)

w2

w3

X

X

X

X

(Copy)

=̂
X

|D⟩

w1 + w2

(Def. 4.1)

(Scalarfe)

The faults weighted as w1 and w2 combine to yield a fault weighted as w1 +w2. The fault

weighted as w3 is eliminated entirely, since it is the only one populating its flip operator.

We can arbitrarily iterate this procedure, resulting in a diagram that requires no

flip operators as it encodes no detectable faults. Instead, the diagram now encodes a

set of undetectable atomic faults that is still generating for all undetectable composite

faults the noise model initially described, since our transformations are fault-equivalent.

Additionally, the diagram clearly remains in SN-form as all rewrites preserve it.

At this point we notice that we are not yet guaranteed to have explicitly enumerated

all undetectable faults that might occur. To be precise, enumerating all combinations of

faults detectable by a single detecting region does not consider combinations of faults from

different regions. Thus, it remains to actually unfold all undetectable composite faults.

For a pair of gadgets representing faults F1, F2, recall that we can introduce their prod-

uct F1F2 into the noise model, either algebraically by Proposition 3.16 or diagrammatically

by implementing the axiom (Combfe) for multi-edge noise in Proposition 4.12. Since we

found that fault gadgets commute in Proposition 4.9 we can arbitrarily rearrange the fault

gadgets on the boundary edges of the diagram. Thus, for every possible sequence of atomic

faults in the noise model, arrange that sequence using gadget commutation and produce the

resulting composite fault gadget by combining fault gadgets in pairs using Proposition 4.12.

In our example there is only a single undetectable fault left, so this operation is not

particularly interesting. However, suppose we had two additional edge flips weighted as

6. Completeness - Part II: Normal Forms and Final Proof 85

w4 and w5 on the boundary. They can not be part of any detecting region, so all previous

operations would not affect their fault gadgets. Then we have:
w

1
+

w
2

X

X

Z
|D⟩ =̂

w
1

+
w

2

X

X

Z
|D⟩

X

(w
1

+
w

2
)+

w
4

X

(w
1

+
w

2
)+

w
5

Y

X

Z

w
4

+
w

5

w
4

w
5

w
4

w
5

(Combfe)

(Prop. 4.9)

Y

(w
1

+
w

2
)+

w
4

+
w

5

X

The result is a full enumeration of all undetectable fault signatures the noise model could

possibly generate, while remaining in SN-form the whole time. We note that since we

enumerate all possible signatures that the noise model generates for each equivalence

class, we in particular generate a fault gadget annotated with the minimum weight

associated with faults in that class. That is, for each possible effect equivalence class,

the diagram will now contain at least one fault gadget F for this class that is annotated

with ewt(eff(F)), i.e. the minimum weight produced in the class.

We close by observing that the outlined naïve enumeration procedure introduces a

number of fault signature factorial in the number of atomic faults, producing a large

quantity of signatures that are either direct duplicates (i.e. congruent) or equivalent (i.e.

flip the same webs). In the upcoming section, we handle these duplicates and find a

procedure to identify a canonical signature for each equivalence class.

Remark 6.7. Even when using more sophisticated and efficient methods outside ZX

diagrams to determine which exact combinations of atomic faults produce unseen composite

faults, the number of signatures we are required to enumerate might still be exponential

in the worst-case. This is expected, as we remind ourselves that checking fault equivalence

is NP-hard [RPK25, Thm. 3.10]. The remainder of the completeness proof may be

performed in a polynomial number of steps, so finding an efficient procedure here would

at least provide strong evidence of P = NP.

6. Completeness - Part II: Normal Forms and Final Proof 86

6.4 Full Normalisation and Completeness

For each fault effect W , we remain with a collection F̄W of signatures such that eff(F) = W

for all F ∈ F̄W . Reducing this collection down to a single representative requires

characterising how the signatures in the collection differ from each other. We can prove

that these differences are only up to stabilisers:

Proposition 6.8. Let D be a ZX diagram where S1, . . . , Sn generates its stabiliser group

S, and let F1, F2 be two faults obtained from signatures defined through the same set

of flip operators. Then we have that eff(F1) = eff(F2) if and only if there is a subset of

generator indices J ⊆ 1, . . . , n such that

F1 ≡ F2 ·
∏
j∈J

Sj .

Proof. We start with the assumption eff(F1) = eff(F2) and work towards F1 = F2 · S for

some stabiliser S.

By Corollary 3.5, eff(F1) = eff(F2) is the case if and only if eff(F1F2) = ∅. We are

operating only on the boundary, so we can apply Proposition 3.10 and see that we can

have eff(F1F2) = ∅ if and only if either F1F2 or −F1F2 is a stabiliser. We observe this is

the case if and only if either F2F1 or −F2F1 are a stabiliser, regardless of whether F1 and

F2 commute or not. Since we can fully generate the stabiliser group, this in turn is the

case if and only if we are able to find a subset J of generator indices with

±F2F1 ≡ ±
∏
j∈J

Sj .

We multiply both sides by F2 and find that, since we treat faults up to their phase,

we can simply discard the sign and show the claim:

F2F2F1 ≡ F2 ·
∏
j∈J

Sj ⇔ IF1 ≡ F2 ·
∏
j∈J

Sj ⇔ F1 ≡ F2 ·
∏
j∈J

Sj .

These conversions between signatures can, once identified, be easily implemented in

the diagram through (Stabfe) and the target merging rule in Eq. (4.3) from Section 4.

Thus, if we pick some signature in the collection F̄W to be the ‘canonical’ representative

F ∗, we can fault-equivalently rewrite every other signature gadget from F̄W into a gadget

exactly matching F ∗. It does not matter which representative we pick, as long as it is

6. Completeness - Part II: Normal Forms and Final Proof 87

consistent in the corresponding effect classes across all semantically equivalent diagrams.

Changing representatives is as easy as applying Proposition 6.8 again. For our purposes,

we will use the lexicographically smallest Pauli operator.

In our example, the diagram has stabiliser generators ZZII, IZZI, IIZZ, and

XXXX. Thus, we would apply the following rewrite:

w
1

+
w

2

X

Z

|D⟩

X

(w
1

+
w

2
)+

w
4

X

(w
1

+
w

2
)+

w
5

X

Y

w
4

+
w

5

w
4

w
5

X

X

X Z

X

X

w
1

+
w

2

X

X

Z
|D⟩

X

(w
1

+
w

2
)+

w
4

X

(w
1

+
w

2
)+

w
5

Y

X

Z

w
4

+
w

5

w
4

w
5

Y

(w
1

+
w

2
)+

w
4

+
w

5

X

=̂

(Prop. 6.8)

(Stabfe)

Y

(w
1

+
w

2
)+

w
4

+
w

5

X

Finally, we merge all signature gadgets with gadget deduplication through Proposition 4.11,

leaving only one representative F ∗ per class. By construction, F ∗ is annotated with

the minimal weight of all faults in the class.

We ultimately have a one-to-one correspondence between fault effects and these

canonical representatives of signatures. We formalise this form of the diagram:

Definition 6.9 (rSN-form). Let DF be a ZX diagram that implements a noise model

with fault gadgets. We say that DF is in reduced signature normal form (‘rSN-form’ for

short) if

1. DF is in signature normal form, and

2. every gadget F ∗ is the lexicographically smallest in its equivalence class, and

3. every equivalence class has exactly one representative, and

4. gadgets are ordered lexicographically ascending, and

5. the gadget F ∗ is annotated with ewt(eff(F ∗)).

We generalise from our example and observe that every diagram that implements

its noise model with fault gadgets has such a normal form:

6. Completeness - Part II: Normal Forms and Final Proof 88

Proposition 6.10. Every ZX diagram DF implementing some noise model F using fault

gadgets has a reduced signature normal form. The gadgets in the reduced signature

normal form uniquely enumerate the function ewt of F for all undetectable effects.

Proof. By Proposition 6.6, DF has a signature normal form. We can remove all detectable

faults with Proposition 4.14, and further generate at least one gadget for all effect

classes using Proposition 4.9 and Proposition 4.12. The gadgets are reduced to the

lexicographically smallest equivalent in their effect class using Proposition 6.8 and (Stabfe),

and deduplicated using the implementation of (Mergefe) in Proposition 4.11. Thus, by

construction the fault gadgets already enumerate the function ewt of F for all undetectable

effects.

Finally, the gadgets are reordered using Proposition 4.12 to be sorted in lexicographi-

cally ascending order. As we collapsed all duplicates, this ordering is necessarily unique

and so is the resulting enumeration, leaving the obtained diagram in reduced signature

normal form.

All that remains is to revisit the theorem:

Theorem 3.18 (Completeness for fault equivalence). The ZX calculus given through

axiomatisation in Fig. 2 is complete for fault equivalence.

Proof. Let D1, D2 be two ZX diagrams with respective noise models F1,F2 that are fault-

equivalent under these noise models. Implement these noise models into the diagrams,

obtaining D1,F1 , D2,F2 , using fault gadgets by Theorem 4.6.

By Proposition 6.10, both D1,F1 and D2,F2 have a reduced signature normal form

Dnf
1,F1

and Dnf
2,F2

. This normal form exactly and uniquely enumerates the effect weighting

functions for F1 and F2 respectively.

D1 and D2 are assumed to be fault-equivalent w.r.t. F1,F2, so by Corollary 3.13,

their sets of undetectable effects must be the same and their effect weighting functions

must agree on all undetectable effects. Then the subdiagrams containing the fault gadgets

in Dnf
1,F1

and Dnf
2,F2

must be identical. All potential diagrammatic differences between

Dnf
1,F1

and Dnf
2,F2

have to be inside the fully idealised D1 and D2. However, they must

6. Completeness - Part II: Normal Forms and Final Proof 89

at least obey D1 = D2, as through Proposition 2.19 fault equivalence implies semantic

equivalence.

Finally, all rewrites up to these reduced signature normal forms are fault-equivalent,

and provably so using just the axioms in Fig. 2 and in particular reversible. As we have

D1 = D2, we can rewrite the idealised D1 into D2 using the idealised Clifford axioms

from Fig. 2, since the Clifford ZX calculus is complete for semantic equivalence [Bac14].

But then we can rewrite D1,F1 into D2,F2 fault-equivalently.

So we have shown that we can obtain a ZX calculus that is complete for fault equivalence

of Clifford ZX diagrams. Using the restatement of w-fault boundedness formulated in

Proposition 3.12, we can obtain three directly related ZX calculi that are sound and

complete for w-fault equivalence, fault boundedness, and w-fault boundedness respectively.

6.5 Extending Completeness to w-Fault Boundedness

We aim to obtain the calculus that is complete for w-fault boundedness through combining

the calculus that is complete for w-fault equivalence and the calculus that is complete for

fault boundedness. This is achieved through decomposing the former into a combined

statement of the latter two. However, we first have to show that this decomposition

itself is sound and complete.

Through transitivity of w-fault boundedness, we can directly show that a decomposition

of w-fault boundedness is sound:

Proposition 6.11. For ZX diagrams D1, D2, D3 with respective noise models F1,F2,F3

it holds that

D1 =̂
w
D2 and D2 ≤̂ D3 =⇒ D1 ≤̂

w
D3

Proof. D1 =̂
w
D2 requires D1 ≤̂

w
D2 by definition, and D2 ≤̂ D3 is syntactic sugar for

D2 ≤̂
∞
D3, so Proposition 2.23 is directly applicable to show the claim.

It remains to show that we can decompose every statement of D1 ≤̂
w
D2 for arbitrary

noise models attached to D1, D2, i.e. that the decomposition we will use is complete. We

do this by creating an interim diagram D′
1, that has exactly the undetectable effects W

of D1 with effect weight ewt(W) ≥ w removed. Interestingly, we can simply reuse the

6. Completeness - Part II: Normal Forms and Final Proof 90

=̂
w

(Limitfe)

if wF ≥ w

wF

(a)

≤̂
(Boundfb)

if w ≥ w′

w w′

(b)

Figure 3: Axioms that in addition to Fig. 2 are required for a calculus that is complete for (a)
w-fault equivalence and (b) fault boundedness.

reduced signature normal form of Proposition 6.10: This form exactly enumerates the

ewt of D1 in fault gadgets and is by definition fault-equivalent to it. Then we simply

remove all fault gadgets that have an annotation at or above w.

To formalise:

Proposition 6.12. The decomposition of w-fault boundedness into w-fault equivalence

and fault boundedness is complete, i.e. for every two diagrams D1, D2 with respective

noise models F1,F2 and D1 ≤̂
w
D2 there is a diagram D3 with noise model F3 such that

D1 =̂
w
D3 and D3 ≤̂ D2.

Proof. Consider D1,F1 as the implementation of F1 into D1 using fault gadgets, and let

Dnf
1,F1

be the rSN-form obtained from D1,F1 . Then let Dw
1,F1

be the diagram obtained

from Dnf
1,F1

through removing all fault gadgets F annotated with ewt(eff(F)) ≥ w. By

construction, this implies

D =̂ D1,F1 =̂ Dnf
1,F1 =̂

w
Dw

1,F1 .

We also observe that we have obtained a diagram which is ∞-fault-bounded by D2:

The limitation to w is now enforced in the diagram Dw
1,F1

itself. If Dw
1,F1

was not ∞-

fault-bounded by D2, there would be some fault gadget Fbad with an effect that has no

equivalent in F2. But since we removed every fault that has an effect greater or equal to w

it must be that ewt(eff(Fbad)) < w, which directly contradicts the precondition D1 ≤̂
w
D2

as Fbad must also be present in Dnf
1,F1

=̂ D1,F1 =̂ D1. Thus, Dw
1,F1

is the diagram we seek

and it holds that

D1 =̂
w
Dw

1,F1 ≤̂ D2 .

6. Completeness - Part II: Normal Forms and Final Proof 91

We then provide the two axioms required for a calculus that is for w-fault equivalence

and fault boundedness respectively, in Fig. 3. Of course, we have to prove that they are

sound for their corresponding diagrammatic relationships as well.

Proposition 6.13. The axioms in Fig. 3 are sound w.r.t. w-fault equivalence and fault

boundedness respectively.

Proof. (Limitfe) By Proposition 2.20, the RHS is fault-bounded by the LHS, so showing

that LHS ≤̂
w

RHS remains. But the depicted noise model does not feature any

non-trivial faults that have an effect weight strictly below weight w: The only

non-trivial effect is that of the Z flip, which has effect wF ≥ w by assumption. So

the requirements of Proposition 3.12 are trivially fulfilled, so LHS ≤̂
w

RHS and thus

LHS =̂
w

RHS holds.

(Boundfb) Via a similar argument to (Limitfe), the only non-trivial effect on both LHS and

RHS is that of their annotated Z-flips ZLHS and ZRHS. The underlying diagram is

the same, so similar to Corollary 3.14 it suffices to establish a direct correspondence

between the fault effects.

Both Z-flips flip the same web since they are in the same position, and they are

the only ones populating their respective effect classes so we have wt(ZLHS) =

ewt(eff(ZLHS)) and similar to the RHS. Then with the assumption w ≥ w′ it holds

that

ewt(eff(ZLHS)) = wt(ZLHS) = w ≥ w′ = wt(ZRHS) = ewt(eff(ZRHS)) ,

which in turn implies LHS ≤̂
∞

RHS by Proposition 3.12, and thus by definition

LHS ≤̂ RHS.

The decomposition of w-fault boundedness is sound by Proposition 6.11, so we can

further obtain a calculus that is sound for w-fault boundedness:

Corollary 6.14. The calculus obtained from adding both axioms in Fig. 3 to the axioms

from fault equivalence in Fig. 2 is sound for w-fault boundedness.

6. Completeness - Part II: Normal Forms and Final Proof 92

Based on Theorem 3.18 we can prove completeness for w-fault equivalence and fault

boundedness, and by combining them with Proposition 6.12, for w-fault boundedness:

Theorem 6.15 (Completeness for w-fault boundedness). Assume the base axiomatisation

in Fig. 2. Adding the two rules in Fig. 3 yields a calculus that is complete for w-fault

equivalence and fault boundedness respectively. Adding both yields a calculus that is

complete for w-fault boundedness.

Proof. We will show the claim for w-fault equivalence first. Let there be two diagrams

D1, D2 with noise models F1,F2 such that D1 =̂
w
D2. Then obtain their implementation

using fault gadgets as D1,F1 , D2,F2 and the reduced signature normal forms as Dnf
1,F1

, Dnf
2,F2

like in Theorem 3.18.

Using a similar strategy as in Proposition 6.12, we want to remove all fault gadgets

representing effects with weight at or above w, yielding diagrams Dw
1,F1

, Dw
2,F2

. We can

apply this rewrite diagrammatically using the rule (Limitfe) from Fig. 3. Then we have

Dnf
1,F1 =̂

w
Dnf

2,F2 ⇐⇒ Dw
1,F1 =̂ Dw

2,F2 ,

where the last property can be diagrammatically shown by Theorem 3.18, so adding

(Limitfe) yields a calculus that is complete for w-fault equivalence.

An analogous proof shows that instead adding (Boundfb) from Fig. 3 results in a calculus

complete for fault boundedness.

By Proposition 6.12, every statement of w-fault boundedness can be decomposed into

a statement of w-fault equivalence and fault boundedness. So to obtain a calculus that is

complete for w-fault boundedness, it suffices to add both rules from Fig. 3.

7. Implementation 93

7 Implementation

Although the ZX calculus is now proven sound and complete for fault equivalence and

related notions, deriving a proof / counterexample for fault equivalence is still a manual

process. The definition of fault equivalence admits a naïve approach to automation

which is only suitable for the smallest circuits due to its high computational complexity.

This prevents scaling the verification of fault equivalence to larger circuits and circuits

with more involved noise models [RPK25].

However, the proof we give in Sections 3 to 6 for the completeness result is constructive

throughout. From it, we may derive a more refined approach to automating the

task of checking fault equivalence and implement it for usage in the wider research

community, both in the context of the ZX calculus and fault-tolerant quantum computing.

Due to the structure of the proof, namely going via a normal form that enumerates

effects instead of faults, this refined algorithm admits an exponentially lower complexity

than the naïve approach.

This section outlines the derivation of the algorithm. An implementation is provided

as a ready-to-use Python package in [Rüs25], built on top of the pyzx package [KvdW20],

and currently limited to equally weighted noise models. We compare the algorithm to

the naïve approach derivable from the definition of fault equivalence and discuss some

optimisations that may be done outside the ZX calculus. Finally, we describe how the

intermediate normal forms may be used for efficiently computing additional properties

of noise models beyond fault equivalence.

7.1 Automating Fault Equivalence Checks

The naïve implementation directly derivable from the definition consists of iterating

through every fault in a diagram and finding some equivalent with lower weight by

iterating through every possible fault in the other diagram. This can quickly become

intractable: If we assume an edge flip noise model such that every edge e ∈ E features all

three axis flips X,Y, Z, the number of all possible computational faults in a diagram is∣∣∣P |E|
∣∣∣ = 4|E|, so the total number of operations would be roughly on the order of

(
4|E|

)2
.

Even using a meet-in-the-middle approach where possible faults are precomputed for both

7. Implementation 94

diagrams and indexed in an access-efficient data-structure, this only reduces the time and

space requirements to 4|E|. We thus propose an alternative implementation.

We recall that the completeness proof through fault effects, largely facilitated by

Proposition 3.12, decouples finding all possible undetectable effects of a noise model

along with their effect weight, and checking fault equivalence itself. Furthermore, finding

undetectable effects can be decomposed into first finding the signatures of all atomic

faults, enumerating all of their combinations, and subsequently normalising them, which

was used in Section 6.

The implementation in [Rüs25] leverages a similar decomposition. Instead of computing

signatures and directly starting enumeration, the signatures of atomic faults are normalised

and deduplicated first (keeping the lowest weight value), ensuring that enumeration is not

artificially inflated due to atomic signatures with the same effect. This is sound without

further normalisation steps when choosing an appropriate canonical representative, i.e.

when the set of all representatives is closed under multiplication. In our case, choosing

the lexicographically smallest representative yields a set that admits this property.

Then, given two diagrams D1, D2 with noise models F1,F2, determining whether it

holds that D1 =̂ D2 w.r.t. F1,F2 is done as follows:

1. For both diagrams, compute detecting web generators via [Bor19, Alg. 3], obtain a

flip operator collection and add sinks according to them.

2. Compute9, normalise and deduplicate signatures for all atomic faults.

3. Disconnect sinks and subsequently eliminate detectable effects through Proposi-

tion 3.17.

4. Obtain all undetectable effects from combinations of existing undetectable effects.

5. Determine the effect from D1 with the lowest effect weight w that has no boundary

equivalent in D2. If it exists, this directly implies D1 ≤̂
w
D2 and provides a

counterexample to D1 ≤̂
w+1

D2. If it does not exist, D1 ≤̂
∞
D2 holds.

9The provided implementation computes signatures similar to how a Pauli web would be computed in
Section 5.3, opening fault gadgets and sinks to obtain a Pauli web that highlights particular spawning
edges green. An implementation based on the constructive proof of Proposition 5.4 is left for future work.

7. Implementation 95

6. Repeat the last step for the symmetric scenario to obtain a verdict for fault

equivalence.

This strategy has direct implications for computational complexity. The algorithm

described above first computes the effects of atomic faults in polynomial time, represented

as normalised signatures. Signatures exist on the boundary and specify a subset of d

flip operators from flipop. Representing the diagram as a state on n qubits we have n

boundary edges, so there may be at most
∣∣∣Pn × P(flipop)

∣∣∣ = 4n2d different signatures.

The normalisation procedure removes all differences that are due to stabilisers, so the

total number of possible different effects is

∣∣∣(Pn × P(flipop)
)
/S
∣∣∣ = 4n2d

2n
= 2n+d

Computing all undetectable effects from these atomic faults may thus result in up to

2n+d combinations10. The number d of detecting web generators is clearly bounded

by the number of edges, so the refined approach yields an exponential advantage

over the naïve approach.

7.1.1 Further Performance Improvements

For almost all steps provided above, keeping derivations outside the ZX calculus provides

further opportunities for performance improvements. We outline three such opportunities:

Virtualisation of fault gadgets, compilation of signatures to integers, and combination of

unfolding undetectable effects and finding the lowest weight unmatched effect.

The representation of diagrams with fault gadgets is based on one of the internal

representations for ZX diagrams from the pyzx package [KvdW20]. To be precise,

diagrams are taken to be undirected graphs with attached vertex types, where fault

gadgets (including sinks) are kept ‘virtual’ as long as possible. That is, adding a fault

gadget to the diagram does not change the diagram immediately, but simply adds an

entry in an internal data structure. The representation exposes a function to instantiate

all fault gadgets on a diagram, which is only done when absolutely necessary, e.g. when

the diagram should be drawn with its noise model for analysis.
10Note that although the number of combinations may be dependent on d, there may be only 2n distinct

undetectable effects, so many combinations will be duplicated.

7. Implementation 96

Keeping fault gadgets virtual removes from them any particular ordering on edges,

making them commutative by default and thus respecting Proposition 4.9. Additionally,

moving fault gadgets as in Section 5.3 is subject to a large boost in performance: We do

not have to add (potentially multiple) individual spiders and edges to the diagram for

targets on internal edges, only to subsequently remove them as those targets are merged.

Another improvement to performance is derived from handling signatures as vectors

in B2n (see Section 2.1). Multiplication up to global phase in this case becomes an XOR

operation between these vectors, which is very fast on almost all modern computing

resources. This is a common optimisation when handling members of a Pauli group, and

is leveraged to a high degree e.g. in the package stim [Gid21b].

For the final improvement, we combine the steps of computing all combinations

of effects and finding the lowest weight effect that has no equivalent. We sketch this

approach only for the implemented variant, i.e. limited to equally weighted noise models.

A generalisation to arbitrarily weighted noise models is left for future work.

We observe that if we have two undetectable faults F1, F2 on D1, for which we have

already found some equivalent faults F ′
1, F

′
2 with lower weight in D2, we do not have

to check their direct composite F1F2, since we could simply combine F ′
1F

′
2 as well to

provide an equivalent. Thus, ‘interesting’ / unchecked undetectable faults may only

be generated by combining detectable faults.

We then incrementally generate effects through iteration over detectable faults. In

some iteration i, we generate all combinations of all detectable faults discovered in iteration

i− 1. Since all atomic faults are equally weighted with awt(·) = 1, we can take the weight

of a generated fault to be equal to the iteration i. The weight of an effect is then the

weight of the first fault with this effect that was generated, and since w-fault boundedness

requires (w − 1)-fault boundedness, the incremental procedure is sound. In the case that

a counterexample to w-fault boundedness is found, i.e. some new undetectable effect is

generated where no equivalent in D2 was found yet, the entire procedure may return early

and report that (w − 1)-fault boundedness is the strongest guarantee that can be made.

A similar optimisation is applicable for combinations of existing undetectable effects,

and both variants are implemented in [Rüs25].

7. Implementation 97

7.2 Additional Properties

The notion of fault equivalence may be used to recover many standard definitions in the

fields of quantum error correction and fault-tolerant quantum computing [RPK25]. One

of the most direct results is the distance of a circuit, or more generally of a ZX diagram.

The distance of a diagram D under a noise model F is the lowest weight that F

associates with an undetectable non-trivial fault [Got97], and it is useful for characterising

which faults are not only detectable, but also correctable [DP23]. Using the framework of

fault effects, the distance of D is equivalent to the lowest effect weight of some non-trivial

effect in Eff ̸=0(F). We recall that a fully idealised diagram only admits the trivial effect ∅,

so following [RPK25, Prop. 3.6] we can directly describe the distance of D as statements

about the fault equivalence of D and its fully idealised variant:

distance of D is d ⇐⇒ D... ... =̂
d

D... ... and D... ... ̸=̂
d+1

D... ...

After computing the reduced signature normal form, we can thus simply find the lowest

weight effect from the enumeration with fault gadgets in linear time. However, we usually

need not compute the entire rSN-form, since we can apply a similar incremental variant

of determining fault boundedness as in Section 7.1.1.

Beyond these direct derivations from fault equivalence, the framework of signatures,

effects, and the related normal forms from Sections 5 and 6, allows to reason about other

properties of noise models. However, most of these properties are incompatible with

adversarial reasoning. We recall that the essence of adversarial reasoning is that, as

long as we preserve what we deem the ‘worst case’ for some property, we may destroy

and create ‘information’ freely. Reasoning as in Propositions 3.15 to 3.17 (visualised

as (Mergefe), (Combfe) and (Detectfe) in Fig. 2) preserves fault equivalence and related

properties, but since we are able to introduce or remove atomic faults from the noise

model such reasoning may not preserve other properties.

We note that up to and including the point of computation of all atomic signatures,

the original noise model is still described in full, i.e. all atomic fault effects are preserved.

It is only after the computation of atomic signatures, i.e. when modifying the first

signature normal form in Section 6.3, that we apply adversarial reasoning. The two

7. Implementation 98

properties of noise models subsequently presented are best directly derived from such

a full and non-adversarial description.

7.2.1 Detector Error Models

Fault detection in noisy Clifford quantum circuits often involves measurements of selected

qubits, which may individually have their outcome flipped by faults [Got97]. These

measurements may be organised into ‘detecting sets’ or ‘detectors’, which are groups of

measurements whose parity of outcomes is predetermined in a noise-free setting [Der+24;

RPK25]. Thus, if a fault were to occur such that odd many measurements in a detector

are flipped, the parity deterministically changes and the fault becomes detectable. In

such a scenario, a fault is said to have violated that detector.

We can now relate faults and detectors by analysing which faults would violate which

detectors. This is captured in the aptly named notion of a detector error model [Der+24],

where a popular example is the Tanner graph [Tan81; Loe04]. A Tanner graph is a bipartite

graph that consists of vertices of two types, one representing (usually atomic) faults, the

other representing detectors. Two vertices (F, d) are connected if and only if F violates d.

Tanner graphs find applications in configuring decoders, which are essential parts of

an error corrected quantum circuit and, given a vector measurement outcomes, try to infer

which fault occurred [Der+24]. If they are successful, that fault may be corrected; this

constitutes an important cornerstone for fault-tolerant quantum computation. In a Tanner

graph, one may derive whether the selection for detectors is appropriate to facilitate the

decoding task: If every fault violates a unique set of detectors, the fault itself can be

identified with a particular violation at runtime and subsequently corrected [DP23; Got22].

Thus, the sparsity of the Tanner graph is typically directly connected with the theoretical

performance of the associated decoder. We must note that analytically finding the best

Tanner graph for a given circuit is an NP-hard problem [Der+24], so good detectors are

often found empirically via fast simulations, e.g. using the stim package [Gid21b].

We briefly return to ZX diagrams, where detectors may be identified directly with

detecting regions [RPK25]. A fault may flip the sign of a detecting region, causing the

entire diagram to collapse to zero. From a simulation perspective, this is interpreted as

7. Implementation 99

reducing the probability of obtaining the usual (fault-free) deterministic outcome of a

detector to zero, ensuring that the detector is flipped which is observable.

In the framework of signatures and effects, we recall that a signature contains a

description of the detecting regions that a fault flips, which is equivalent to the detectors

it would violate. Thus, we can directly construct the Tanner graph for a circuit from the

first signature normal form we obtain before applying adversarial reasoning.

However, signatures support a richer notion: In addition to detector violations, we

also have information on the potential influence of a fault on the outputs of the diagram.

Pauli operators are unitary and self-adjoint, i.e. they square to the identity, so if a Pauli

operator P describes the action of a fault on the boundary we may simply use P to

correct the fault. Further, we can collapse multiple equivalent faults using normalisation

from Section 6.4, which does not require adversarial reasoning. If we include X,Z

‘outcome’ nodes in the Tanner graph and connect faults according to their signatures,

we obtain what we call an extended Tanner graph that is in bijection to the collection

of signatures we obtained for our atomic faults.

We conclude by noting that the information contained in an extended Tanner graph

may be obtained through other venues. Most prominently, once a fault is fully identified

by a decoder, efficient stabiliser simulation [AG04] may be used to obtain the required

corrections. Signatures describe those simulation results already, and obtaining them

is unified for both circuits and the more general ZX diagrams. Thus, the findings in

this section effectively lifted the notion of a Tanner graph and the procedure of finding

it to arbitrary Clifford ZX diagrams.

7.2.2 Logical Error Rate

Quantum error correction codes, including those arising from the stabiliser formalism,

encode the space of some qubits, called logical qubits, onto a larger space of underlying

physical qubits [Got97]. However, outcomes of operations on the logical space cannot

be measured directly. Instead, the outcomes of subsequent physical measurements are

aggregated to determine the value of the logical operator, yielding an ‘observable’ [Der+24].

In the presence of faults, the outcome of this observable may at times be flipped.

7. Implementation 100

Beyond correcting faults, it is useful to determine just whether a fault occurred or not,

i.e. detecting it, and accurately predicting whether the aforementioned observable was

flipped. When an observable was flipped as the result of a fault, but the prediction is that

it was not flipped, we say that a logical error occurred. Simulating how often such logical

errors occur, i.e. sampling the circuits noise model and determining how often corrections

and the subsequent flip predictions fail, yields the logical error rate [Gid21b]. A low logical

error rate is directly in correspondence with good performance of a decoder in practice.

The implementation of such simulations in the stim package is currently limited to

circuits. However, sampling from a noise model does not necessarily require a circuit.

In particular, we may directly use effects obtained from normalising the first signature

normal form as a basis for sampling: A faults effect encodes the flipped detectors and

the faults influence on the outputs of the diagram, from we can derive whether the

observable was flipped. Thus, we could sample from the range of atomic fault effects,

forming the composite effect via Proposition 3.4 and applying the prediction algorithm

provided in the surrounding setting. A demo for sampling (without subsequent prediction)

is included in the Python package from [Rüs25].

Beyond lifting Tanner graphs and empirically determining the logical error rate to the

general realm of Clifford ZX diagrams, the framework of signatures and effects may enable

a simplified or even more computationally efficient derivation of many other properties

from noise models. We leave such insights to future work.

8. Future Work 101

8 Future Work

This work opens up a variety of venues for future work. As outlined in [RPK25], the

perspective of fault equivalence may be able to describe many different concepts in the

fields of quantum error correction and fault-tolerant quantum computing. With our

completeness result, we pave the way for verifying fault tolerance automatically and

scale. Additionally, the framework of signatures and effects is highly versatile: Some

introductory examples of its applications were provided in Section 7.

We move on to briefly sketch three concrete directions for future work. First, the

implementation described in Section 7 does not yet implement interfaces with high

usability, and further may be subject to many optimisations inside those implementations.

Second, we discuss how the results of this work may be used with more general noise

models, in particular those that are either not adversarial or provide continuous rather

than discrete notions of likelihood as an extension to the brief discussion in Section 7.2.

Third, we initiate a generalisation of this work beyond two-level systems into systems

with higher dimensionality.

8.1 Extensions and Optimisations

The implementation as provided in [Rüs25] and described in Section 7 currently only

supports equally weighted noise models. Thus, a direct extension would provide sup-

port for weighted noise models, which requires adaptation of the optimisations out-

lined in Section 7.1.1.

Beyond this, the implementation may be subject to additional performance improve-

ments. For example, instead of calculating web generators at the very beginning of

signature computation, we could apply local adversarial reasoning to collapse some effect

classes first. Depending on the noise model in use and the reasoning that is performed,

lowering the number of signatures that need to be obtained through e.g. Proposition 5.4

may provide an overall benefit to performance. Note that this does not necessitate that

the subsequently derived properties are invariant under adversarial reasoning. When

collapsing k faults into a single class before signature computation, we can provide k copies

8. Future Work 102

of the resulting signature and assign the original weights to restore a non-adversarial

description of the original noise model.

This may be particularly useful when dealing with edge flip noise models, since given

a spider s, one may immediately collapse all faults on its legs of the same colour as s

onto a single leg by reasoning with the (Fusion) rule. Y -flips may be decomposed into

individual X,Z flips which are processed separately, as long as we retain the original

weight of the Y -flip and produce a combined signature accordingly. Such a change

drops the number of faults to be handled roughly by the average degree of connectivity

of the diagram. More sophisticated and thus usually more computationally expensive

approaches could start grouping faults across entire networks of spiders with the same

colour. Finally, this change facilitates partitioning the diagram, allowing multiple threads

to operate on the diagram at the same time.

Another approach might be to improve the computation of web generators themselves.

The algorithm from [Bor19, Alg. 3] requires solving a round of Gaussian elimination

over a matrix scaling with the number of spiders inside the diagram. For particularly

large diagrams this becomes intractable, even though, e.g. for deep diagrams with a

low number of qubits, subsequent derivation of fault equivalence might be fast. Thus,

future efforts might study whether Pauli webs can be obtained incrementally or at

least with improved scaling, and whether obtaining them can be done in synergy with

incrementally computing signatures.

A focus on potential improvements during computation of signatures is projected to

provide the most benefits, since these have direct impacts on properties beyond just fault

equivalence. Beyond signatures, implementations for individual properties may be further

optimised, e.g. one might derive a more efficient iteration technique for determining fault

equivalence that improves on that from Section 7.1.1. It remains to be determined whether

such changes actually provide worthwhile benefits in scenarios that are deemed realistic.

8.2 Beyond Adversarial Weighted Noise Models

As we outlined in Section 2.3, a possibility future work is considering more general

noise models and whether we can obtain a completeness result for fault equivalence

8. Future Work 103

with respect to them. We explore both notions of non-adversariality and continuous

likelihood separately.

8.2.1 Non-Adversarial Reasoning

Requiring information beyond the worst case, i.e. only considering the minimum weight

of a fault in a single effect class, prevents direct usage of Propositions 3.15, 3.17 and 4.12.

The main benefit of adversariality is that it allows to construct ‘local’ rewrites. To be

precise, the rewrites can have a reduced scope and make fewer to none assumptions

about their surroundings, as long as they preserve the worst case, regardless of whether

they actually handle the worst case when applied or not.

This simplification is unavailable when reasoning non-adversarially. Thus, going

beyond adversarial reasoning might require non-local rewrites, which are difficult to apply

in distributed settings and thus difficult to generalise to parallel computing.

8.2.2 Continuous Likelihood Models

We could replace the weight annotation on fault gadgets with a more general annotation,

that allows continuous values like probabilities, instead of discrete values from N̸=0.

As long as we continue to use annotations, this might provide a direct completeness

result for these noise models.

However, these annotations may not be directly seen as syntactic sugar anymore,

since Lemma 4.5 is not easily generalisable for fractional values. Thus, unweighted

or even weighted edge flip noise might not be universal for all noise models in such a

setting, requiring adaptation of Theorem 4.6.

8.3 Beyond the Qubit ZX Calculus

Beyond the qubit ZX calculus, recent developments have resulted in similar calculi for

arbitrary but fixed d-dimensional systems, referred to as the qudit ZX calculus [Ran14;

Wan22], or even mixed finite integer dimensions, referred to as the ‘finite-dimensional

ZX calculus’. Both are provably complete in a general setting [PSW25]. However,

our results are restricted to the Clifford fragment. For this fragment, we in particular

8. Future Work 104

require both universality and completeness which has so far only been derived for e.g.

prime-dimensional qudit calculi [BC22; Poó+23], so we focus on such ‘qupit’ systems.

We reason that the construction of fault gadgets must admit a generalisation to

qupit calculi. In particular, a fault gadget consists of Pauli boxes, which are in turn

characterised by a Clifford operation C that sends a single Z Pauli operator to the

Pauli operator corresponding to the box in question. Using the universality result for

stabiliser qupit calculi [BC22], there must thus be an implementation in the calculus

for this Clifford operation C.

The resulting fault gadgets can return to using weight annotations only for Z flips,

as the complexity of higher-dimensional rotations is handled by the Pauli boxes. Using

completeness of these calculi, we should be able to recover most of the properties listed

in Section 4.2 for such more general fault gadgets. Open considerations however include

the precise handling of Pauli webs in such systems, thus we leave a full and precise

generalisation for future work.

9. Conclusion 105

9 Conclusion

In this work, we proved that there exists an axiomatisation of a ZX calculus that is

sound and complete for showing fault equivalence between diagrams, and we further

motivated and supplied the individual elements of this axiomatisation. To achieve this,

we extended the framework around the notion of fault equivalence and derived notions

like fault boundedness with the framework of fault signatures and fault effects, with which

we were able to restate the aforementioned notions such that they are easier to verify.

We showed how this framework can be implemented and used diagrammatically and how

many intuitive properties of noise models are reflected when shown inside a diagram.

At the centre of the diagrammatic implementation we found fault gadgets, a tool

thus far used as a static tracker for potential faults. We showed that fault gadgets are

indeed capable of guided movement through a diagram, giving them characteristics of

a dynamic tracker. Further, we showed that fault gadgets may be used for multiple

purposes, including harnessing other fault gadgets as in the case of sinks.

Even though we introduced and formalised more general noise models, i.e. those

that can assign arbitrarily assign weights to faults, we showed using fault gadgets that

there is a direct diagrammatic interpretation such that it suffices to describe a noise

model that only allows Z axis flips on particular edges, all with the same weight. This

recovers the usability of noise models that are commonly used in fault-tolerant quantum

computing, and provides a notion of universality for them.

As a direct derivation from the completeness result, we introduced an algorithm for

checking fault equivalence with an exponential improvement in computational complexity

when compared to the naïve approach derivable from the definition of fault equivalence.

We discuss how this algorithm was implemented in a ready-to-use Python package, and

what optimisations were applied to improve tractability of the problem. Additionally,

we reasoned that the framework of faults and effects may be used to recover additional

properties of noise models and related notions, such as decoders and logical error rate,

which are contained in the implementation as well. This lifts such properties to being

easily defined on general Clifford ZX diagrams, which facilitates an increased interaction

between the work on circuits and the work on ZX diagrams when modeling noise. Finally,

9. Conclusion 106

we provided multiple extension points for future work, including improvements to the

implementation and generalising the completeness result for more expressive noise models

and higher-dimensional ZX calculus variants.

Looking forward, we anticipate that the results of this work aid in identifying novel

fault-tolerant implementations of existing quantum programs, as well as verifying the

correctness of existing implementations. In particular, we project the derived software

package to find applications in handling larger diagrams, where manual reasoning becomes

cumbersome or even intractable, and fully automated testing that may lead to automated

discovery of fault-tolerant implementations. Therefore, this work provides and extends a

valuable formal foundation that facilitates manual as well as automated reasoning about

noise, fault equivalence, and ultimately fault tolerance.

References

[AG04] Scott Aaronson and Daniel Gottesman. “Improved simulation of stabilizer
circuits”. In: Phys. Rev. A 70 (5 Nov. 2004), p. 052328. doi: 10.1103/
PhysRevA . 70 . 052328. url: https : / / link . aps . org / doi / 10 . 1103 /
PhysRevA.70.052328.

[Bac+17] Dave Bacon et al. “Sparse Quantum Codes From Quantum Circuits”. In:
IEEE Transactions on Information Theory 63.4 (2017), pp. 2464–2479. doi:
10.1109/TIT.2017.2663199.

[Bac14] Miriam Backens. “The ZX-calculus Is Complete for Stabilizer Quantum
Mechanics”. In: New Journal of Physics 16.9 (Sept. 17, 2014), p. 093021.
issn: 1367-2630. doi: 10.1088/1367-2630/16/9/093021. arXiv: 1307.7025
[quant-ph]. url: http://arxiv.org/abs/1307.7025v1.

[BC22] Robert I. Booth and Titouan Carette. “Complete ZX-Calculi for the Stabiliser
Fragment in Odd Prime Dimensions”. In: 47th International Symposium on
Mathematical Foundations of Computer Science (MFCS 2022). Ed. by Stefan
Szeider, Robert Ganian, and Alexandra Silva. Vol. 241. Leibniz International
Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022, 24:1–24:15. isbn: 978-3-95977-256-3.
doi: 10.4230/LIPIcs.MFCS.2022.24. url: https://drops.dagstuhl.de/
entities/document/10.4230/LIPIcs.MFCS.2022.24.

[BKW22] Niel de Beaudrap, Aleks Kissinger, and John van de Wetering. “Circuit
Extraction for ZX-Diagrams Can Be #P-Hard”. en. In: Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022. doi: 10.4230/LIPICS.ICALP.2022.
119. url: https://drops.dagstuhl.de/entities/document/10.4230/
LIPIcs.ICALP.2022.119.

[Bom+24] Hector Bombin et al. “Unifying Flavors of Fault Tolerance with the ZX
Calculus”. In: Quantum 8 (June 18, 2024), p. 1379. issn: 2521-327X. doi:
10.22331/q- 2024- 06- 18- 1379. arXiv: 2303.08829 [quant-ph]. url:
http://arxiv.org/abs/2303.08829v3.

[Bor19] Coen Borghans. “ZX-calculus and Quantum Stabilizer Theory”. MA thesis.
Radboud University, 2019. url: https://www.cs.ox.ac.uk/people/
aleks.kissinger/papers/borghans-thesis.pdf (visited on 08/06/2025).

[BPW17] Miriam Backens, Simon Perdrix, and Quanlong Wang. “A Simplified Stabi-
lizer ZX-calculus”. In: Electronic Proceedings in Theoretical Computer Science
236 (Jan. 2017), pp. 1–20. issn: 2075-2180. doi: 10.4204/eptcs.236.1.
url: http://dx.doi.org/10.4204/EPTCS.236.1.

107

https://doi.org/10.1103/PhysRevA.70.052328
https://doi.org/10.1103/PhysRevA.70.052328
https://link.aps.org/doi/10.1103/PhysRevA.70.052328
https://link.aps.org/doi/10.1103/PhysRevA.70.052328
https://doi.org/10.1109/TIT.2017.2663199
https://doi.org/10.1088/1367-2630/16/9/093021
https://arxiv.org/abs/1307.7025
https://arxiv.org/abs/1307.7025
http://arxiv.org/abs/1307.7025v1
https://doi.org/10.4230/LIPIcs.MFCS.2022.24
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.24
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.24
https://doi.org/10.4230/LIPICS.ICALP.2022.119
https://doi.org/10.4230/LIPICS.ICALP.2022.119
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.119
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.119
https://doi.org/10.22331/q-2024-06-18-1379
https://arxiv.org/abs/2303.08829
http://arxiv.org/abs/2303.08829v3
https://www.cs.ox.ac.uk/people/aleks.kissinger/papers/borghans-thesis.pdf
https://www.cs.ox.ac.uk/people/aleks.kissinger/papers/borghans-thesis.pdf
https://doi.org/10.4204/eptcs.236.1
http://dx.doi.org/10.4204/EPTCS.236.1

REFERENCES 108

[CB18] Christopher Chamberland and Michael E. Beverland. “Flag fault-tolerant
error correction with arbitrary distance codes”. In: Quantum 2 (Feb. 2018),
p. 53. issn: 2521-327X. doi: 10.22331/q-2018-02-08-53. url: https:
//doi.org/10.22331/q-2018-02-08-53.

[CD11] Bob Coecke and Ross Duncan. “Interacting Quantum Observables: Categor-
ical Algebra and Diagrammatics”. In: New Journal of Physics 13.4 (Apr. 14,
2011), p. 043016. issn: 1367-2630. doi: 10.1088/1367-2630/13/4/043016.
arXiv: 0906 . 4725 [quant-ph]. url: http : / / arxiv . org / abs / 0906 .
4725v3.

[Der+24] Peter-Jan H. S. Derks et al. Designing Fault-Tolerant Circuits Using Detector
Error Models. Dec. 25, 2024. doi: 10.48550/arXiv.2407.13826. arXiv:
2407.13826 [quant-ph]. url: http://arxiv.org/abs/2407.13826v2.
Pre-published.

[DP09] Ross Duncan and Simon Perdrix. “Graph States and the Necessity of Euler
Decomposition”. In: Proceedings of the 5th Conference on Computability in
Europe: Mathematical Theory and Computational Practice. CiE ’09. Heidel-
berg, Germany: Springer-Verlag, 2009, pp. 167–177. isbn: 9783642030727.
doi: 10.1007/978-3-642-03073-4_18. url: https://doi.org/10.1007/
978-3-642-03073-4_18.

[DP23] Nicolas Delfosse and Adam Paetznick. Spacetime codes of Clifford circuits.
2023. arXiv: 2304.05943 [quant-ph]. url: https://arxiv.org/abs/2304.
05943v2.

[Gid21a] Craig Gidney. Stim: A fast stabilizer circuit library. Main README. Sept.
2021. url: https://github.com/quantumlib/Stim/blob/main/README.
md (visited on 08/07/2025).

[Gid21b] Craig Gidney. “Stim: a fast stabilizer circuit simulator”. In: Quantum 5
(July 2021), p. 497. issn: 2521-327X. doi: 10.22331/q-2021-07-06-497.
url: https://doi.org/10.22331/q-2021-07-06-497.

[Got09] Daniel Gottesman. An Introduction to Quantum Error Correction and Fault-
Tolerant Quantum Computation. Apr. 16, 2009. doi: 10.48550/arXiv.0904.
2557. arXiv: 0904.2557 [quant-ph]. url: http://arxiv.org/abs/0904.
2557v1. Pre-published.

[Got22] Daniel Gottesman. Opportunities and Challenges in Fault-Tolerant Quantum
Computation. 2022. arXiv: 2210.15844 [quant-ph]. url: https://arxiv.
org/abs/2210.15844v1.

[Got97] Daniel Gottesman. Stabilizer Codes and Quantum Error Correction. 1997.
arXiv: quant-ph/9705052 [quant-ph]. url: https://arxiv.org/abs/
quant-ph/9705052v1.

[Got98] Daniel Gottesman. The Heisenberg Representation of Quantum Computers.
1998. arXiv: quant-ph/9807006 [quant-ph]. url: https://arxiv.org/
abs/quant-ph/9807006v1.

[Hua+23a] Eric Huang et al. “Tailoring Three-Dimensional Topological Codes for Biased
Noise”. In: PRX Quantum 4.3 (Sept. 2023). issn: 2691-3399. doi: 10.1103/
prxquantum.4.030338. url: http://dx.doi.org/10.1103/PRXQuantum.
4.030338.

https://doi.org/10.22331/q-2018-02-08-53
https://doi.org/10.22331/q-2018-02-08-53
https://doi.org/10.22331/q-2018-02-08-53
https://doi.org/10.1088/1367-2630/13/4/043016
https://arxiv.org/abs/0906.4725
http://arxiv.org/abs/0906.4725v3
http://arxiv.org/abs/0906.4725v3
https://doi.org/10.48550/arXiv.2407.13826
https://arxiv.org/abs/2407.13826
http://arxiv.org/abs/2407.13826v2
https://doi.org/10.1007/978-3-642-03073-4_18
https://doi.org/10.1007/978-3-642-03073-4_18
https://doi.org/10.1007/978-3-642-03073-4_18
https://arxiv.org/abs/2304.05943
https://arxiv.org/abs/2304.05943v2
https://arxiv.org/abs/2304.05943v2
https://github.com/quantumlib/Stim/blob/main/README.md
https://github.com/quantumlib/Stim/blob/main/README.md
https://doi.org/10.22331/q-2021-07-06-497
https://doi.org/10.22331/q-2021-07-06-497
https://doi.org/10.48550/arXiv.0904.2557
https://doi.org/10.48550/arXiv.0904.2557
https://arxiv.org/abs/0904.2557
http://arxiv.org/abs/0904.2557v1
http://arxiv.org/abs/0904.2557v1
https://arxiv.org/abs/2210.15844
https://arxiv.org/abs/2210.15844v1
https://arxiv.org/abs/2210.15844v1
https://arxiv.org/abs/quant-ph/9705052
https://arxiv.org/abs/quant-ph/9705052v1
https://arxiv.org/abs/quant-ph/9705052v1
https://arxiv.org/abs/quant-ph/9807006
https://arxiv.org/abs/quant-ph/9807006v1
https://arxiv.org/abs/quant-ph/9807006v1
https://doi.org/10.1103/prxquantum.4.030338
https://doi.org/10.1103/prxquantum.4.030338
http://dx.doi.org/10.1103/PRXQuantum.4.030338
http://dx.doi.org/10.1103/PRXQuantum.4.030338

REFERENCES 109

[Hua+23b] Jiaxin Huang et al. “Graphical CSS Code Transformation Using ZX Calculus”.
In: Electronic Proceedings in Theoretical Computer Science 384 (Aug. 2023),
pp. 1–19. issn: 2075-2180. doi: 10.4204/eptcs.384.1. url: http://dx.
doi.org/10.4204/EPTCS.384.1.

[KvdW20] Aleks Kissinger and John van de Wetering. “PyZX: Large Scale Automated
Diagrammatic Reasoning”. In: Proceedings 16th International Conference on
Quantum Physics and Logic, Chapman University, Orange, CA, USA., 10-14
June 2019. Ed. by Bob Coecke and Matthew Leifer. Vol. 318. Electronic
Proceedings in Theoretical Computer Science. Open Publishing Association,
2020, pp. 229–241. doi: 10.4204/EPTCS.318.14.

[KvdW24] Aleks Kissinger and John van de Wetering. Picturing Quantum Software: An
Introduction to the ZX-calculus and Quantum Compilation. Preprint, 2024.

[Leu+97] Debbie W. Leung et al. “Approximate quantum error correction can lead to
better codes”. In: Physical Review A 56.4 (Oct. 1997), pp. 2567–2573. issn:
1094-1622. doi: 10.1103/physreva.56.2567. url: http://dx.doi.org/
10.1103/PhysRevA.56.2567.

[Loe04] H.-A. Loeliger. “An introduction to factor graphs”. In: IEEE Signal Process-
ing Magazine 21.1 (2004), pp. 28–41. doi: 10.1109/MSP.2004.1267047.

[MBG23] Matt McEwen, Dave Bacon, and Craig Gidney. “Relaxing Hardware Re-
quirements for Surface Code Circuits using Time-dynamics”. In: Quantum 7
(Nov. 2023), p. 1172. issn: 2521-327X. doi: 10.22331/q-2023-11-07-1172.
url: https://doi.org/10.22331/q-2023-11-07-1172.

[NC10] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quan-
tum Information: 10th Anniversary Edition. Cambridge: Cambridge Univer-
sity Press, 2010.

[NW17] Kang Ng and Quanlong Wang. “A universal completion of the ZX-calculus”.
In: (June 2017). doi: 10.48550/arXiv.1706.09877. url: https://arxiv.
org/abs/1706.09877v1.

[Poó+23] Boldizsár Poór et al. “The Qupit Stabiliser ZX-travaganza: Simplified Axioms,
Normal Forms and Graph-Theoretic Simplification”. In: (2023). arXiv: 2306.
05204 [quant-ph]. url: https://arxiv.org/abs/2306.05204v2.

[Pre15] John Preskill. Quantum computation lecture notes. 2015. url: https://www.
preskill.caltech.edu/ph219/ (visited on 08/07/2025).

[PSW25] Boldizsár Poór, Razin A. Shaikh, and Quanlong Wang. “ZX-calculus is
Complete for Finite-Dimensional Hilbert Spaces”. In: Electronic Proceedings
in Theoretical Computer Science 426 (Aug. 2025), pp. 127–158. issn: 2075-
2180. doi: 10.4204/eptcs.426.5. url: http://dx.doi.org/10.4204/
EPTCS.426.5.

[Ran14] André Ranchin. “Depicting qudit quantum mechanics and mutually unbiased
qudit theories”. In: Electronic Proceedings in Theoretical Computer Science
172 (Dec. 2014), pp. 68–91. issn: 2075-2180. doi: 10.4204/eptcs.172.6.
url: http://dx.doi.org/10.4204/EPTCS.172.6.

https://doi.org/10.4204/eptcs.384.1
http://dx.doi.org/10.4204/EPTCS.384.1
http://dx.doi.org/10.4204/EPTCS.384.1
https://doi.org/10.4204/EPTCS.318.14
https://doi.org/10.1103/physreva.56.2567
http://dx.doi.org/10.1103/PhysRevA.56.2567
http://dx.doi.org/10.1103/PhysRevA.56.2567
https://doi.org/10.1109/MSP.2004.1267047
https://doi.org/10.22331/q-2023-11-07-1172
https://doi.org/10.22331/q-2023-11-07-1172
https://doi.org/10.48550/arXiv.1706.09877
https://arxiv.org/abs/1706.09877v1
https://arxiv.org/abs/1706.09877v1
https://arxiv.org/abs/2306.05204
https://arxiv.org/abs/2306.05204
https://arxiv.org/abs/2306.05204v2
https://www.preskill.caltech.edu/ph219/
https://www.preskill.caltech.edu/ph219/
https://doi.org/10.4204/eptcs.426.5
http://dx.doi.org/10.4204/EPTCS.426.5
http://dx.doi.org/10.4204/EPTCS.426.5
https://doi.org/10.4204/eptcs.172.6
http://dx.doi.org/10.4204/EPTCS.172.6

REFERENCES 110

[RPK24] Benjamin Rodatz, Boldizsár Poór, and Aleks Kissinger. Floquetifying Sta-
biliser Codes with Distance-Preserving Rewrites. Dec. 16, 2024. doi: 10.
48550/arXiv.2410.17240. arXiv: 2410.17240 [quant-ph]. url: http:
//arxiv.org/abs/2410.17240v2. Pre-published.

[RPK25] Benjamin Rodatz, Boldizsár Poór, and Aleks Kissinger. Fault Tolerance by
Construction. 2025. arXiv: 2506.17181 [quant-ph]. url: https://arxiv.
org/abs/2506.17181v2.

[Rüs25] Maximilian Rüsch. Project code for this work. 2025. url: https://github.
com/maximilianruesch/fault-gadgets.

[SZ14] Christian Schröder de Witt and Vladimir Zamdzhiev. “The ZX-calculus is
incomplete for quantum mechanics”. In: Electronic Proceedings in Theoretical
Computer Science 172 (Dec. 2014), pp. 285–292. issn: 2075-2180. doi: 10.
4204/eptcs.172.20. url: http://dx.doi.org/10.4204/EPTCS.172.20.

[Tan81] R. Tanner. “A recursive approach to low complexity codes”. In: IEEE
Transactions on Information Theory 27.5 (1981), pp. 533–547. doi: 10.
1109/TIT.1981.1056404.

[TFK23] Alex Townsend-Teague, Julio Magdalena de la Fuente, and Markus Kesselring.
“Floquetifying the Colour Code”. In: Electronic Proceedings in Theoretical
Computer Science 384 (Aug. 30, 2023), pp. 265–303. issn: 2075-2180. doi:
10 . 4204 / EPTCS . 384 . 14. arXiv: 2307 . 11136 [quant-ph]. url: http :
//arxiv.org/abs/2307.11136v2.

[Tuc20] David Kingsley Tuckett. “Tailoring surface codes: Improvements in quantum
error correction with biased noise”. (qecsim: https://github.com/qecsim/
qecsim). PhD thesis. University of Sydney, 2020. doi: 10.25910/x8xw-9077.

[vdWet20] John van de Wetering. ZX-calculus for the working quantum computer
scientist. 2020. arXiv: 2012.13966 [quant-ph]. url: https://arxiv.org/
abs/2012.13966v1.

[Vil19] Renaud Vilmart. “A Near-Minimal Axiomatisation of ZX-Calculus for Pure
Qubit Quantum Mechanics”. In: 2019 34th Annual ACM/IEEE Symposium
on Logic in Computer Science (LICS). 2019, pp. 1–10. doi: 10.1109/LICS.
2019.8785765.

[Wan22] Quanlong Wang. Qufinite ZX-calculus: a unified framework of qudit ZX-
calculi. 2022. arXiv: 2104.06429 [quant-ph]. url: https://arxiv.org/
abs/2104.06429v5.

https://doi.org/10.48550/arXiv.2410.17240
https://doi.org/10.48550/arXiv.2410.17240
https://arxiv.org/abs/2410.17240
http://arxiv.org/abs/2410.17240v2
http://arxiv.org/abs/2410.17240v2
https://arxiv.org/abs/2506.17181
https://arxiv.org/abs/2506.17181v2
https://arxiv.org/abs/2506.17181v2
https://github.com/maximilianruesch/fault-gadgets
https://github.com/maximilianruesch/fault-gadgets
https://doi.org/10.4204/eptcs.172.20
https://doi.org/10.4204/eptcs.172.20
http://dx.doi.org/10.4204/EPTCS.172.20
https://doi.org/10.1109/TIT.1981.1056404
https://doi.org/10.1109/TIT.1981.1056404
https://doi.org/10.4204/EPTCS.384.14
https://arxiv.org/abs/2307.11136
http://arxiv.org/abs/2307.11136v2
http://arxiv.org/abs/2307.11136v2
https://github.com/qecsim/qecsim
https://github.com/qecsim/qecsim
https://doi.org/10.25910/x8xw-9077
https://arxiv.org/abs/2012.13966
https://arxiv.org/abs/2012.13966v1
https://arxiv.org/abs/2012.13966v1
https://doi.org/10.1109/LICS.2019.8785765
https://doi.org/10.1109/LICS.2019.8785765
https://arxiv.org/abs/2104.06429
https://arxiv.org/abs/2104.06429v5
https://arxiv.org/abs/2104.06429v5

Appendices

111

A. Missing Proofs for Fault Gadgets 112

A Missing Proofs for Fault Gadgets

Proposition 4.9 (Gadgets commute). Let DF be a gadget-idealised ZX diagram based

on the underlying diagram D. For a single edge e in D, targets of fault gadgets from DF

on e may be arbitrarily and fault-equivalently rearranged.

Proof. We need to show that every pair of Pauli boxes attached to fault gadgets commutes.

If the Pauli boxes are of the same type, they trivially commute, similar to the process in

Eq. (4.3). The order in which we consider the boxes does not matter, so we have three

remaining cases ZX, ZY and XY .

If the boxes are attached to the same gadget, we can get that ZX commutes by

composing to Y using Eq. (4.7), applying a π-phase copy and decomposing in a mirrored

manner:

π
2 - π

2

=̂
(Eq. 4.7)

π
2 - π

2

π

=̂

=̂
(XPhasefe)

- π
2

π
2

=̂
(Eq. 4.7)

... =̂

w

w

w

w

w

The remaining two cases follow directly, since Y boxes may be decomposed into X and Z

boxes, which commute, and compose to Y on the other side again. So it remains to show

the three cases where the boxes are attached to different gadgets.

We first show using the set of axioms from Fig. 2 that Z and X Pauli boxes commute:

=̂ =̂ =̂

w1 w2 w1 w1 w1w2w2w2

=̂

w1w2
π
2

π
2

π
2

=̂

w1w2
π
2

=̂

w1w2
(XPhasefe)

=̂

w1w2
(Commutefe)

(A.1)

Finally, we employ the decomposition of Y boxes into X,Z boxes from Eq. (4.7) to show

A. Missing Proofs for Fault Gadgets 113

the remaining two cases:

- π
2

w1 w2

π
2 =̂

w1 w2

=̂
(Eq. 4.7)

w1 w2

=̂

w1w2

(Eq. A.1)

=̂

w1w2

- π
2

w1w2

π
2=̂

(Eq. 4.7)

and for X and Y :

- π
2

w1 w2

π
2 =̂

w1 w2

=̂
(Eq. 4.7)

w2 w1

=̂

w2 w1

=̂

w1 w2

=̂

w1w2

(Eq. A.1)

=̂

w1w2

=̂

w1w2

(Eq. 4.7)

- π
2

π
2

Proposition 4.11. Let DF be a ZX diagram in GI-form, and let F1 ≡ F2 be congruent

faults in F . Then the fault gadgets for F1, F2 have the same targets on the same edges,

and it holds that:
w2w1

P1 P1

Pn Pn

... =̂

min(w1, w2)

P1

Pn

...

A. Missing Proofs for Fault Gadgets 114

Proof.

w2w1

P1 P1

Pn Pn

...
w2w1

C1 C†
1

Cn C†
n

=̂

w2w1

C1 C†
1

Cn C†
n

...=̂...

w2w1

C1 C†
1

Cn C†
n

...=̂
(Bialgebra)

min(w1, w2)

C1 C†
1

Cn C†
n

...=̂
(Mergefe)

min(w1, w2)

C1 C†
1

Cn C†
n

...=̂

min(w1, w2)

C1 C†
1

Cn C†
n

...=̂
(Elimfe)

min(w1, w2)

P1

Pn

...=̂

Proposition 4.12. Let DF be a ZX diagram in GI-form, and let F1, F2 be arbitrary

faults in F , then it holds that:

w1 + w2w1

P1,1 P1,1

P1,n P1,n

...

=̂
P2,1 P2,1

P2,m P2,m

...

w2

w1

w2

P1,1

P1,n

P2,m

P2,1

A. Missing Proofs for Fault Gadgets 115

Proof.

w1 + w2w1

P1,1

P1,n

...

=̂
P2,1

P2,m

w2

w1 + w2w1

C1,1 C†
1,1

C1,n C†
1,n

...

C2,1 C†
2,1

C2,m C†
2,m

...

w2

=̂

w1 + w2w1

w2

w1 + w2

w1

...
...

w2

...
...

=̂
(Bialgebra)

w1 + w2

w1

...
...

w2
...

...

=̂
(OCM)

w1

...
...

w2

...
...

=̂
(Combfe)

w1

...
...

w2

...
...

=̂

w1

...
...

w2

...
...

=̂ =̂
(Elimfe)

w1

w2

P1,1

P1,n

P2,1

P2,m

...

...
... ...

...

C1,1

C1,n

C2,1

C2,m

C†
1,1

C†
1,n

C†
2,1

C†
2,m

(Eq. 4.2)

C1,1

C1,n

C2,1

C2,m

C†
1,1

C†
1,n

C†
2,1

C†
2,m

C1,1

C1,n

C2,1

C2,m

C†
1,1

C†
1,n

C†
2,1

C†
2,m

C1,1

C1,n

C2,1

C2,m

C†
1,1

C†
1,n

C†
2,1

C†
2,m

...
...

...
...

C1,1

C1,n

C2,1

C2,m

C†
1,1

C†
1,n

C†
2,1

C†
2,m

C1,1

C1,n

C2,1

C2,m

C†
1,1

C†
1,n

C†
2,1

C†
2,m

P1,1

P1,n

P2,1

P2,m

A. Missing Proofs for Fault Gadgets 116

Proposition 4.13. For any w1, . . . , wn it holds that:

...
w1 wn

b1 bn

w
1

+
w

2

w
1

+
w

3

...

w
1

+
w

n

b2

...
b3

......

w2

=̂
...

w1 wn

b1 bnb2

...

w2

Proof. First, observe that we can bring the diagram into a form where we deem the fault

with w1 as ‘active for combination’:

=̂
...

w1 wn

b1 bnb2

...

w2
...

w1 wn

b1 bnb2

...

w2

(Elimfe)
...

w1 wn

b1 bnb2

...

w2

=̂
...

w1 wn

b1 bnb2

...

w2

=̂
(Bialgebra)

(A.2)

After this activation, we apply the rule (Combfe) to generate the composite fault for w1, w2

and use Eq. (A.2) to ‘deactivate’ w1 again:

=̂
(Elimfe) ...

w1

wn

b1 bnb2

...

w2

=̂
...

w1

wn

b1 bnb2

...

w2

=̂
...

w1

wn

b1 bnb2

...

w2

=̂
(Combfe) ...

w1

wn

b1 bnb2

...

w2

w1 + w2

=̂
...w1

wn

b1 bnb2

...

w2w1 + w2

=̂
...w1

wn

b1 bnb2

...

w2w1 + w2

(Bialgebra) (Fusion) ...w1
wn

b1 bnb2

...

w2w1 + w2

=̂
(Eq. 2.2)

...w1 wn

b1 bnb2

...

w2 w1 + w2

=̂
(OCM)

(Elimfe) ...w1 wn

b1 bnb2

...

w2 w1 + w2

=̂
(Eq. A.2)

So we have recovered the original diagram with a composite fault attached. This procedure

can clearly be iterated to generate composite faults of w1 with w3, . . . , wn, and thus yields

the claim.

A. Missing Proofs for Fault Gadgets 117

Proposition 4.14. For any w1, . . . , wn it holds that:

w1

P1,1

P1,j

...

P2,1

P2,k

...

w2

...
... =̂

Pn,1

Pn,l

... ...

...

wn...

...

w1 + w2

P1,j

P1,j

...

P2,1 P2,1

P2,k P2,k
...

w2

...
...

Pn,1 Pn,1

Pn,l Pn,l

... ...

...

wn...

...

P1,j

P1,j

...

...

...

w1 + wn...

Proof.

w1

P1,1

P1,j

...

P2,1

P2,k

...

w2

...
...

=̂

Pn,1

Pn,l

... ...

...

wn...

...

w1

P1,1

P1,j

...

P2,1

P2,k

...

w2

...
...

Pn,1

Pn,l

... ...

...

wn...

...

A. Missing Proofs for Fault Gadgets 118

=̂

w1

P1,1

P1,j

...

P2,1

P2,k

...

w2

...
...

Pn,1

Pn,l

... ...
...

wn...

...

w1 + w2

(Prop. 4.13)

w1 + wn...

...

=̂
(Detectfe)

P1,1

P1,j

...

P2,1

P2,k

...

w2

...
...

Pn,1

Pn,l

... ...

...

wn...

...

w1 + w2...

...

w1 + wn

=̂

P1,1

P1,j

...

P2,1

P2,k

...

w2

...
...

Pn,1

Pn,l

... ...

...

wn...

...

w1 + w2 w1 + wn...

...

=̂

P1,1

P1,j

...

P2,1

P2,k

...
w2

...
...

Pn,1

Pn,l

... ...

...

wn...

...

w1 + w2...

...

w1 + wn

At this point, the spawning edges connected to the same Pauli boxes can be seperated

into distinct fault gadgets similar to the proof of Proposition 4.12, finishing the claim.

	Introduction
	Related Work

	Preliminaries
	Stabiliser Formalism
	ZX Calculus
	Faults
	Noise Models
	Fault Equivalence
	Pauli Webs

	Completeness - Part I: Foundations and Setup
	Fault Effects
	Restating Fault Boundedness with Effects
	Axioms
	Soundness
	Outlook: Diagrammatic Extraction of Effect Weights

	Fault Gadgets
	Universality of Unweighted Edge Flip Noise
	Basic Properties
	Moving Fault Gadgets
	Implementing Axioms for Multi-Edge Noise

	Fault Signatures
	Flip Operators
	Signatures
	Transforming Gadgets Into Signatures

	Completeness - Part II: Normal Forms and Final Proof
	Sinks
	Recovering The Diagram
	Enumerating Undetectable Faults
	Full Normalisation and Completeness
	Extending Completeness to w-Fault Boundedness

	Implementation
	Automating Fault Equivalence Checks
	Additional Properties

	Future Work
	Extensions and Optimisations
	Beyond Adversarial Weighted Noise Models
	Beyond the Qubit ZX Calculus

	Conclusion
	References
	Missing Proofs for Fault Gadgets

